首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion
【24h】

MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion

机译:MCHMDA:预测基于相似性和低级矩阵完成的微生物疾病关联

获取原文
获取原文并翻译 | 示例

摘要

With the development of high-through sequencing technology and microbiology, many studies have evidenced that microbes are associated with human diseases, such as obesity, liver cancer, and so on. Therefore, identifying the association between microbes and diseases has become an important study topic in current bioinformatics. The emergence of microbe-disease association database has provided an unprecedented opportunity to develop computational method for predicting microbe-disease associations. In the study, we propose a low-rank matrix completion method (called MCHMDA) to predict microbe-disease associations by integrating similarities of microbes and diseases and known microbe-disease associations into a heterogeneous network. The microbe similarity is computed from Gaussian Interaction Profile (GIP) kernel similarity based on the known microbe-disease associations. Then, we further improve the microbe similarity by taking into account the inhabiting organs of these microbes in human body. The disease similarity is computed by the average of disease GIP similarity, disease symptom-based similarity, and disease functional similarity. Then, we construct a heterogeneous microbe-disease association network by integrating the microbe similarity network, disease similarity network, and known microbe-disease association network. Finally, a matrix completion method is used to calculate the association scores of unknown microbe-disease pairs by the fast Singular Value Thresholding (SVT) algorithm. Via 5-fold Cross Validation (5CV) and Leave-One-Out Cross Validation (LOOCV), we evaluate the prediction performances of MCHMDA and other state-of-the-art methods which include BRWMDA, NGRHMDA, LRLSHMDA, and KATZHMDA. On benchmark dataset HMDAD, the experimental results show that MCHMDA outperforms other methods in terms of area under the receiver operating characteristic curve (AUC). MCHMDA achieves the AUC values of 0.9251 and 0.9495 in 5CV and LOOCV, respectively, which are the highest values among the competing methods. In addition, we also further indicate the prediction generality of MCHMDA on an expanded microbe-disease associations dataset (HMDAD-SUP). Finally, case studies prove the prediction ability in practical applications.
机译:随着高速测序技术和微生物学的发展,许多研究证明了微生物与人类疾病有关,例如肥胖,肝癌等。因此,鉴定微生物和疾病之间的关联已成为当前生物信息学中的重要研究课题。微生物疾病协会数据库的出现提供了一个前所未有的机会,可以制定用于预测微生物疾病关联的计算方法。在该研究中,我们提出了一种低秩矩阵完成方法(称为MCHMDA)以通过将微生物和疾病和已知的微生物疾病关联的相似性与异构网络相同来预测微生物疾病关联。根据已知的微生物疾病关联,从高斯相互作用谱(GIP)内核相似性计算微生物相似度。然后,我们通过考虑在人体中这些微生物的栖息地改善微生物相似性。疾病相似性是通过疾病GIP相似性,疾病症状的相似性和疾病功能相似性的平均值计算的。然后,通过整合微生物相似性网络,疾病相似性网络和已知的微生物疾病协会网络来构建异质微生物疾病关联网络。最后,通过快速奇异值阈值(SVT)算法来计算矩阵完成方法来计算未知微生物疾病对的关联评分。通过5倍交叉验证(5CV)和留下交叉验证(LOOCV),我们评估MCHMDA的预测性能和其他最先进的方法,包括BRWMDA,NGRHMDA,LRLSHMDA和Katzhmda。在基准数据集HMDAD上,实验结果表明,MCHMDA在接收器操作特征曲线(AUC)下的区域方面优于其他方法。 MCHMDA分别在5CV和LOOCV中实现0.9251和0.9495的AUC值,这是竞争方法中的最高值。此外,我们还进一步指示MCHMDA对扩展的微生物疾病关联数据集(HMDAD-SUP)的预测。最后,案例研究证明了实际应用中的预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号