首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >An Improved Muti-Task Learning Algorithm for Analyzing Cancer Survival Data
【24h】

An Improved Muti-Task Learning Algorithm for Analyzing Cancer Survival Data

机译:一种改进的癌症生存数据分析的多任务学习算法

获取原文
获取原文并翻译 | 示例

摘要

Survival analysis is a popular branch of statistics. At present, many algorithms (like traditional multi-tasking learning model) cannot be applied well in practice because of censored data. Although using some model (like parametric regression model) can avoid it, they need strict assumptions. This undermines the very nature of things, which is very detrimental to the study of practical problems. The method proposed in this paper can apply well to the censored data, but does not need to make any additional assumptions about the original problem. It can be said that it breaks through the above two kinds of major limitations. The algorithm is a kind of inductive transfer learning method, which can fully obtain the information in the censored data, using domain-specific information implicit in each feature to enhance the generalization capability of the model. We also used two common performance metrics as criteria to judge the predictive performance differences between the models in this article and those of other mainstream models. The results show that the model proposed in this paper is 10 similar to 15 percent higher than other mainstream models, which proves that our multi-task learning model has a great advantage in the survival analysis of cancer genes.
机译:生存分析是统计数据的流行分支。目前,由于截取数据,许多算法(如传统的多任务学习模型)无法在实践中应用很好。虽然使用某种型号(如参数回归模型)可以避免它,但它们需要严格的假设。这破坏了事物的本质,这对实际问题的研究非常有害。本文提出的方法可以很好地对删象的数据施加良好,但不需要对原始问题进行任何额外的假设。可以说它破坏了上述两种主要限制。该算法是一种感应转移学习方法,可以使用每个特征中隐含的域特定信息来完全获取概念数据中的信息以增强模型的泛化能力。我们还使用了两个常见的性能指标作为标准,以判断本文中模型与其他主流模型之间的预测性能差异。结果表明,本文提出的模型是与其他主流模型高的10%,这证明了我们的多任务学习模型在癌症基因的存活分析中具有很大的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号