首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >A Cascade of 2.5D CNN and Bidirectional CLSTM Network for Mitotic Cell Detection in 4D Microscopy Image
【24h】

A Cascade of 2.5D CNN and Bidirectional CLSTM Network for Mitotic Cell Detection in 4D Microscopy Image

机译:用于4D显微镜图像中有丝分裂细胞检测的2.5D CNN和双向CLSTM网络的级联

获取原文
获取原文并翻译 | 示例

摘要

Mitosis detection is one of the challenging steps in biomedical imaging research, which can be used to observe the cell behavior. Most of the already existing methods that are applied in detecting mitosis usually contain many nonmitotic events (normal cell and background) in the result (false positives, FPs). In order to address such a problem, in this study, we propose to apply 2.5-dimensional (2.5D) networks called CasDetNet_CLSTM, which can accurately detect mitotic events in 4D microscopic images. This CasDetNet_CLSTM involves a 2.5D faster region-based convolutional neural network (Faster R-CNN) as the first network, and a convolutional long short-term memory (CLSTM) network as the second network. The first network is used to select candidate cells using the information from nearby slices, whereas the second network uses temporal information to eliminate FPs and refine the result of the first network. Our experiment shows that the precision and recall of our networks yield better results than those of other state-of-the-art methods.
机译:丝分裂检测是生物医学成像研究中的具有挑战性的步骤之一,可用于观察细胞行为。应用于检测有丝分裂中的大多数现有方法通常包含许多非挑剔的事件(正常细胞和背景)(误报,FPS)。为了解决此类问题,在本研究中,我们建议应用于CasdetNet_CLSTM的2.5维(2.5D)网络,其可以在4D微观图像中准确地检测有丝分裂事件。此CasdetNet_Clstm涉及2.5D基于区域的卷积神经网络(更快的R-CNN)作为第一网络,以及作为第二网络的卷积长短短期存储器(CLSTM)网络。第一网络用于使用附近切片的信息选择候选单元,而第二网络使用时间信息来消除FPS并优化第一网络的结果。我们的实验表明,我们的网络的精度和召回结果比其他最先进的方法产生更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号