首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >A Transfer Learning Based Super-Resolution Microscopy for Biopsy Slice Images: The Joint Methods Perspective
【24h】

A Transfer Learning Based Super-Resolution Microscopy for Biopsy Slice Images: The Joint Methods Perspective

机译:基于转移学习的活组织检查片片超分辨率显微镜图像:关节方法观点

获取原文
获取原文并翻译 | 示例

摘要

Higher-resolution biopsy slice images reveal many details, which are widely used in medical practice. However, taking high-resolution slice images is more costly than taking low-resolution ones. In this paper, we propose a joint framework containing a novel transfer learning strategy and a deep super-resolution framework to generate high resolution slice images from low resolution ones. The super-resolution framework called SRFBN+ is proposed by modifying a state of the art framework SRFBN. Specifically, the structure of the feedback block of SRFBN was modified to be more flexible. Besides, it is challenging to use typical transfer learning strategies directly for the tasks on slice images, as the patterns on different types of biopsy slice images are varying. To this end, we propose a novel transfer learning strategy, called Channel Fusion Transfer Learning (CF-Trans). CF-Trans builds a middle domain by fusing the data manifolds of the source domain and the target domain, serving as a springboard for knowledge transfer. Thus, in the transfer learning setting, SRFBN+ can be trained on the source domain and then the middle domain and finally the target domain. Experiments on biopsy slice images validate SRFBN+ works well in generating super-resolution slice images, and CF-Trans is an efficient transfer learning strategy.
机译:更高分辨率的活检切片图像显示许多细节,广泛用于医疗实践。然而,采取高分辨率切片图像比采取低分辨率的图像更昂贵。在本文中,我们提出了一种具有新颖的转移学习策略和深度超分辨率框架的联合框架,以产生来自低分辨率的高分辨率切片图像。通过修改艺术框架SRFBN的状态提出了称为SRFBN +的超分辨率框架。具体地,SRFBN的反馈块的结构被修改为更柔韧。此外,由于不同类型的活检切片图像上的图案来利用直接用于切片图像上的任务的典型转移学习策略是具有挑战性的。为此,我们提出了一种新的转移学习策略,称为信道融合传输学习(CF-Trans)。 CF-Trans通过融合源域和目标域的数据歧管来构建中间域,该数据域,作为用于知识传输的跳板。因此,在转移学习设置中,可以在源域训练SRFBN +,然后是中间域,最后是目标域。活检切片图像的实验验证SRFBN +在生成超分辨率切片图像时效果良好,CF-Trans是一种有效的转移学习策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号