首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour
【24h】

A Deep Segmentation Network of Multi-Scale Feature Fusion Based on Attention Mechanism for IVOCT Lumen Contour

机译:基于IVOCT腔轮廓的注意机制的多尺度特征融合的深度分割网络

获取原文
获取原文并翻译 | 示例

摘要

Recently, coronary heart disease has attracted more and more attention, where segmentation and analysis for vascular lumen contour are helpful for treatment. And intravascular optical coherence tomography (IVOCT) images are used to display lumen shapes in clinic. Thus, an automatic segmentation method for IVOCT lumen contour is necessary to reduce the doctors' workload while ensuring diagnostic accuracy. In this paper, we proposed a deep residual segmentation network of multi-scale feature fusion based on attention mechanism (RSM-Network, Residual Squeezed Multi-Scale Network) to segment the lumen contour in IVOCT images. Firstly, three different data augmentation methods including mirror level turnover, rotation and vertical flip are considered to expand the training set. Then in the proposed RSM-Network, U-Net is contained as the main body, considering its characteristic of accepting input images with any sizes. Meanwhile, the combination of residual network and attention mechanism is applied to improve the ability of global feature extraction and solve the vanishing gradient problem. Moreover, the pyramid feature extraction structure is introduced to enhance the learning ability for multi-scale features. Finally, in order to increase the matching degree between the actual output and expected output, the cross entropy loss function is also used. A series of metrics are presented to evaluate the performance of our proposed network and the experimental results demonstrate that the proposed RSM-Network can learn the contour details better, contributing to strong robustness and accuracy for IVOCT lumen contour segmentation.
机译:最近,冠心病引起了越来越多的关注,其中血管内腔轮廓的分割和分析有助于治疗。血管内光学相干断层扫描(IVOCT)图像用于在诊所显示腔形状。因此,需要一种用于IVOCT腔轮廓的自动分段方法,以减少医生的工作量,同时确保诊断准确性。在本文中,我们提出了基于注意机制(RSM网络,残余挤压的多尺度网络)的多尺度特征融合的深度剩余分割网络,以在IVOCT图像中段延长内腔轮廓。首先,三种不同的数据增强方法包括镜面级转口,旋转和垂直翻转被认为是扩展训练集。然后在所提出的RSM网络中,U-Net包含为主体,考虑其具有任何尺寸的输入图像的特征。同时,剩余网络和注意机制的组合应用于提高全球特征提取能力,解决消失梯度问题。此外,引入了金字塔特征提取结构,以提高多尺度特征的学习能力。最后,为了增加实际输出和预期输出之间的匹配程度,还使用跨熵损失功能。提出了一系列指标以评估我们所提出的网络的性能,实验结果表明,所提出的RSM网络可以更好地学习轮廓细节,为IVOCT流明轮廓分割的强大鲁棒性和准确性提供了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号