首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Cross-Domain Classification Model With Knowledge Utilization Maximization for Recognition of Epileptic EEG Signals
【24h】

Cross-Domain Classification Model With Knowledge Utilization Maximization for Recognition of Epileptic EEG Signals

机译:具有知识利用率最大化的跨域分类模型,用于识别癫痫脑电图信号

获取原文
获取原文并翻译 | 示例

摘要

Conventional classification models for epileptic EEG signal recognition need sufficient labeled samples as training dataset. In addition, when training and testing EEG signal samples are collected from different distributions, for example, due to differences in patient groups or acquisition devices, such methods generally cannot perform well. In this paper, a cross-domain classification model with knowledge utilization maximization called CDC-KUM is presented, which takes advantage of the data global structure provided by the labeled samples in the related domain and unlabeled samples in the current domain. Through mapping the data into kernel space, the pairwise constraint regularization term is combined together the predictive differences of the labeled data in the source domain. Meanwhile, the soft clustering regularization term using quadratic weights and Gini-Simpson diversity is applied to exploit the distribution information of unlabeled data in the target domain. Experimental results show that CDC-KUM model outperformed several traditional non-transfer and transfer classification methods for recognition of epileptic EEG signals.
机译:癫痫eEG信号识别的传统分类模型需要充分标记的样本作为训练数据集。另外,当从不同的分布收集训练和测试EEG信号样本时,由于患者组或采集装置的差异,这种方法通常不能表现良好。在本文中,提出了一种具有知识利用率最大化的跨域分类模型,称为CDC-Kum,这利用了在相关域中标记的样本提供的数据全局结构和当前域中的未标记的样本。通过将数据映射到内核空间中,成对约束正则化术语与源域中标记数据的预测差异组合在一起。同时,使用二次重量和基尼 - 辛普森多样性的软聚类正则化术语应用于利用目标域中未标记数据的分布信息。实验结果表明,CDC-Kum模型表现出几种传统的非转移和转移分类方法,以识别癫痫脑脑电图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号