首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Learning Multimodal Networks From Heterogeneous Data for Prediction of lncRNA–miRNA Interactions
【24h】

Learning Multimodal Networks From Heterogeneous Data for Prediction of lncRNA–miRNA Interactions

机译:从异质数据学习多模网络以预测LNCRNA-miRNA相互作用

获取原文
获取原文并翻译 | 示例

摘要

Long noncoding RNAs (lncRNAs) is an important class of non-protein coding RNAs. They have recently been found to potentially be able to act as a regulatory molecule in some important biological processes. MicroRNAs (miRNAs) have been confirmed to be closely related to the regulation of various human diseases. Recent studies have suggested that lncRNAs could interact with miRNAs to modulate their regulatory roles. Hence, predicting lncRNA-miRNA interactions are biologically significant due to their potential roles in determining the effectiveness of diagnostic biomarkers and therapeutic targets for various human diseases. For the details of the mechanisms to be better understood, it would be useful if some computational approaches are developed to allow for such investigations. As diverse heterogeneous datasets for describing lncRNA and miRNA have been made available, it becomes more feasible for us to develop a model to describe potential interactions between lncRNAs and miRNAs. In this work, we present a novel computational approach called LMNLMI for such purpose. LMNLMI works in several phases. First, it learns patterns from expression, sequences and functional data. Based on the patterns, it then constructs several networks including an expression-similarity network, a functional-similarity network, and a sequence-similarity network. Based on a measure of similarities between these networks, LMNLMI computes an interaction score for each pair of lncRNA and miRNA in the database. The novelty of LMNLMI lies in the use of a network fusion technique to combine the patterns inherent in multiple similarity networks and a matrix completion technique in predicting interaction relationships. Using a set of real data, we show that LMNLMI can be a very effective approach for the accurate prediction of lncRNA-miRNA interactions.
机译:长度非编码RNA(LNCRNA)是一类重要的非蛋白质编码RNA。他们最近发现可能能够在一些重要的生物过程中作为监管分子。 Micrornas(MiRNA)已被证实与各种人类疾病的调节密切相关。最近的研究表明,LNCRNA可以与miRNA互动以调节其调节作用。因此,由于它们在确定诊断生物标志物和治疗目标对于各种人类疾病的治疗靶标的潜在作用,预测LNCRNA-miRNA相互作用是生物学上的显着性。为了更好地理解的机制的细节,如果开发了一些计算方法以允许此类调查是有用的。由于已经提供了用于描述LNCRNA和miRNA的不同的异构数据集,我们可以更加可行的是,我们开发模型以描述LNCRNA和MIRNA之间的潜在相互作用。在这项工作中,我们提出了一种新的计算方法,称为LMNLMI以获得此目的。 lmnlmi在几个阶段工作。首先,它从表达式,序列和功能数据中了解模式。基于模式,它然后构造几个网络,包括表达式相似度网络,功能相似性网络和序列相似度网络。基于这些网络之间的相似性的量度,LMNLMI计算数据库中每对LNCRNA和miRNA的相互作用分数。 LMNLMI的新颖性在于使用网络融合技术来组合多个相似度网络中固有的模式和矩阵完成技术在预测交互关系中。使用一组真实数据,我们表明LMNLMI可以是对LNCRNA-miRNA相互作用的准确预测的非常有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号