首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Predicting DNA Methylation States with Hybrid Information Based Deep-Learning Model
【24h】

Predicting DNA Methylation States with Hybrid Information Based Deep-Learning Model

机译:用混合信息的深度学习模型预测DNA甲基化状态

获取原文
获取原文并翻译 | 示例

摘要

DNA methylation plays an important role in the regulation of some biological processes. Up to now, with the development of machine learning models, there are several sequence-based deep learning models designed to predict DNA methylation states, which gain better performance than traditional methods like random forest and SVM. However, convolutional network based deep learning models that use one-hot encoding DNA sequence as input may discover limited information and cause unsatisfactory prediction performance, so more data and model structures of diverse angles should be considered. In this work, we proposed a hybrid sequence-based deep learning model with both MeDIP-seq data and Histone information to predict DNA methylated CpG states (MHCpG). We combined both MeDIP-seq data and histone modification data with sequence information and implemented convolutional network to discover sequence patterns. In addition, we used statistical data gained from previous three input data and adopted a 3-layer feedforward neuron network to extract more high-level features. We compared our method with traditional predicting methods using random forest and other previous methods like CpGenie and DeepCpG, the result showed that MHCpG exceeded the other approaches and gained more satisfactory performance.
机译:DNA甲基化在一些生物过程的调节中起着重要作用。到目前为止,随着机器学习模型的发展,有几种基于序列的深度学习模型,旨在预测DNA甲基化状态,这比传统方法更好地性能,如随机森林和SVM。然而,使用单热编码DNA序列作为输入的卷积网络的深度学习模型可能发现有限的信息并导致不令人满意的预测性能,因此应考虑更多的数据和模型结构。在这项工作中,我们提出了一种基于混合序列的深度学习模型,具有MedIP-SEQ数据和组蛋白信息,以预测DNA甲基化CpG状态(MHCPG)。我们将Medip-SEQ数据和组型修改数据组合使用序列信息和实现的卷积网络以发现序列模式。此外,我们使用了先前三个输入数据中获得的统计数据,并采用了3层前馈神经元网络来提取更多的高级别功能。我们将方法与传统预测方法进行了比较了使用随机森林等先前方法,如Cpgenie和Deepcpg等方法,结果表明,MHCPG超过了其他方法,并获得了更令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号