首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >WeCoMXP: Weighted Connectivity Measure Integrating Co-Methylation, Co-Expression and Protein-Protein Interactions for Gene-Module Detection
【24h】

WeCoMXP: Weighted Connectivity Measure Integrating Co-Methylation, Co-Expression and Protein-Protein Interactions for Gene-Module Detection

机译:WeComXP:加权连通性测量与基因模块检测的共甲基化,共同表达和蛋白质 - 蛋白质相互作用

获取原文
获取原文并翻译 | 示例

摘要

The identification of modules (groups of several tightly interconnected genes) in gene interaction network is an essential task for better understanding of the architecture of the whole network. In this article, we develop a novel weighted connectivity measure integrating co-methylation, co-expression, and protein-protein interactions (called WeCoMXP) to detect gene-modules for multi-omics dataset. The proposed measure goes beyond the fundamental degree centrality measure through considering some formulation of higher-order connections. Thereafter, we apply the average linkage clustering method using the corresponding dissimilarity (distance) values of WeCoMXP scores, and utilize a dynamic tree cut method for identifying some gene-modules. We validate the modules through literature search, KEGG pathway, and gene-ontology analyses on the genes representing the modules. Furthermore, the top 10 TFs/miRNAs that are connected with the maximum number of gene-modules and that regulate/target the maximum number of genes from these connected gene-modules, are identified. Moreover, our proposed method provides a better performance than the existing methods in terms of several cluster-validity indices in maximum times.
机译:基因交互网络中的模块(几组紧密互连基因)是为了更好地理解整个网络的架构的基本任务。在本文中,我们开发了一种新的加权连通性测量,所述加权连通性测量与共甲基化,共表达和蛋白质 - 蛋白质相互作用(称为WeComXP)相结合以检测多OMICS数据集的基因模块。通过考虑一些高阶连接的制定,拟议的措施超出了基本程度的衡量标准。此后,我们使用WeComXP评分的相应不相似性(距离)值来应用平均链接聚类方法,并利用动态树木切割方法来识别一些基因模块。我们通过文学搜索,Kegg路线和基因组织对代表模块的基因进行验证模块。此外,鉴定了与最大基因模块数和调节/靶向来自这些连接基因模块的最大基因数的前10个TFS / miRNA。此外,我们所提出的方法提供比现有方法更好的性能,而在最大次数中的几个群集有效性指数方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号