首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Incorporating Prior Knowledge about Genetic Variants into the Analysis of Genetic Association Data: An Empirical Bayes Approach
【24h】

Incorporating Prior Knowledge about Genetic Variants into the Analysis of Genetic Association Data: An Empirical Bayes Approach

机译:将关于遗传变异的先验知识纳入遗传结社数据的分析:经验贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

In a genome-wide association study (GWAS), the probability that a single nucleotide polymorphism (SNP) is not associated with a disease is its local false discovery rate (LFDR). The LFDR for each SNP is relative to a reference class of SNPs. For example, the LFDR of an exonic SNP can vary widely depending on whether it is considered relative to the separate reference class of other exonic SNPs or relative to the combined reference class of all SNPs in the data set. As a result, the analysis of the data based on the combined reference class might indicate that a specific exonic SNP is associated with the disease, while using the separate reference class indicates that it is not associated, or vice versa. To address that, we introduce empirical Bayes methods that simultaneously consider a combined reference class and a separate reference class. Our simulation studies indicate that the proposed methods lead to improved performance. The new maximum entropy method achieves that by depending on the separate class when it has enough SNPs for reliable LFDR estimation and depending solely on the combined class otherwise. We used the new methods to analyze data from a GWAS of 2,000 cases and 3,000 controls. R functions implementing the proposed methods are available on CRAN and Shiny .
机译:在基因组 - 宽的协会研究(GWAS)中,单个核苷酸多态性(SNP)与疾病无关的概率是其局部假发现率(LFDR)。每个SNP的LFDR相对于SNP的参考类。例如,外源SNP的LFDR可以根据是否被认为是相对于其他优势SNP的单独参考类别或相对于数据集中的所有SNP的组合参考类别进行广泛而变化。结果,基于组合参考类的数据分析可能表明特定的外部SNP与疾病相关联,同时使用单独的参考类表示它没有相关,反之亦然。为了解决这个问题,我们介绍了经验贝叶斯方法,同时考虑组合参考类和单独的参考类。我们的仿真研究表明,所提出的方法导致性能提高。新的最大熵方法实现了通过根据单独的类别取决于具有足够的SNP,以便可靠的LFDR估计,并且完全取决于组合类。我们使用新方法来分析来自2,000个案例的GWA和3,000个控件的数据。 R函数实现所提出的方法可在Cran 和shiny

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号