首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Gene Expressions, Hippocampal Volume Loss, and MMSE Scores in Computation of Progression and Pharmacologic Therapy Effects for Alzheimer's Disease
【24h】

Gene Expressions, Hippocampal Volume Loss, and MMSE Scores in Computation of Progression and Pharmacologic Therapy Effects for Alzheimer's Disease

机译:基因表达,海马体积损失和MMSE评分在计算Alzheimer疾病的进展和药物治疗作用

获取原文
获取原文并翻译 | 示例

摘要

We build personalized relevance parameterization method (PReP-AD) based on artificial intelligence (AI) techniques to compute Alzheimer's disease (AD) progression for patients at the mild cognitive impairment (MCI) stage. Expressions of AD related genes, mini mental state examination (MMSE) scores, and hippocampal volume measurements of MCI patients are obtained from the Alzheimer`s Disease Neuroimaging Initiative (ADNI) database. In evaluation of cognitive changes under pharmacological therapies, patients are grouped based on available clinical measurements and the type of therapy administered, namely donepezil monotherapy and polytherapy of donepezil with memantine. Average leave one out cross validation (LOOCV) error rates are calculated for PReP-AD results as less than 8 percent when MMSE scores are used to compute disease progression for a 60 month period, and 3 percent with hippocampal volume measurements for 12 months. Statistical significance is calculated as p = 0.003 for using AD related genes in disease progression and as p < 0.05 for the results computed by PReP-AD. These relatively small average LOOCV errors and p-values suggest that our PReP-AD methods employing gene expressions, MMSE scores and hippocampal volume loss measurements can be useful in supporting pharmacologic therapy decisions during early stages of AD.
机译:我们基于人工智能(AI)技术构建个性化相关参数化方法(预备AD),以计算轻度认知障碍(MCI)阶段的患者的阿尔茨海默病(AD)进展。 AD相关基因,迷你精神状态检查(MMSE)评分和MCI患者的海马体积测量的表达是从阿尔茨海默氏病神经影像倡议(ADNI)数据库中的。在评估药理学疗法下的认知变化中,患者基于可用的临床测量和施用的治疗类型,即多哌齐单疗法和含有Memantine的多肽的疗法。当MMSE评分用于计算60个月期间的疾病进展时,平均留出一张交叉验证(LOOCV)误差率(LOOCV)错误率为Prep-AD结果为小于8%,并且每60个月内的疾病进展和3%的流量测量为12个月。统计学显着性按照Prep-AD计算的结果,使用AD相关基因计算为P = 0.003,以便使用P <0.05。这些相对较小的平均LOOCV误差和p值表明我们采用基因表达,MMSE评分和海马体积损失测量的预备方法可用于在广告的早期阶段支持药理学治疗决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号