首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Deep Manifold Preserving Autoencoder for Classifying Breast Cancer Histopathological Images
【24h】

Deep Manifold Preserving Autoencoder for Classifying Breast Cancer Histopathological Images

机译:保留深流形自动编码器用于对乳腺癌组织病理学图像进行分类

获取原文
获取原文并翻译 | 示例

摘要

Classifying breast cancer histopathological images automatically is an important task in computer assisted pathology analysis. However, extracting informative and non-redundant features for histopathological image classification is challenging due to the appearance variability caused by the heterogeneity of the disease, the tissue preparation, and staining processes. In this paper, we propose a new feature extractor, called deep manifold preserving autoencoder, to learn discriminative features from unlabeled data. Then, we integrate the proposed feature extractor with a softmax classifier to classify breast cancer histopathology images. Specifically, it learns hierarchal features from unlabeled image patches by minimizing the distance between its input and output, and simultaneously preserving the geometric structure of the whole input data set. After the unsupervised training, we connect the encoder layers of the trained deep manifold preserving autoencoder with a softmax classifier to construct a cascade model and fine-tune this deep neural network with labeled training data. The proposed method learns discriminative features by preserving the structure of the input datasets from the manifold learning view and minimizing reconstruction error from the deep learning view from a large amount of unlabeled data. Extensive experiments on the public breast cancer dataset (BreaKHis) demonstrate the effectiveness of the proposed method.
机译:自动分类乳腺癌的组织病理学图像是计算机辅助病理分析中的重要任务。然而,由于疾病的异质性,组织制备和染色过程引起的外观可变性,提取用于组织病理学图像分类的信息性和非冗余特征是具有挑战性的。在本文中,我们提出了一种新的特征提取器,称为深度流形保留自动编码器,用于从未标记的数据中学习区分特征。然后,我们将提出的特征提取器与softmax分类器集成在一起,对乳腺癌的组织病理学图像进行分类。具体来说,它通过最小化输入和输出之间的距离并同时保留整个输入数据集的几何结构,从未标记的图像块中学习层次结构特征。在无监督训练之后,我们将训练后的深流形保留自动编码器的编码器层与softmax分类器相连,以构建级联模型,并使用标记的训练数据微调此深度神经网络。所提出的方法通过从流形学习视图保留输入数据集的结构,并从大量未标记数据的深度学习视图中最小化重构误差,从而学习判别特征。在公共乳腺癌数据集(BreaKHis)上的大量实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号