首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >KATZLGO: Large-Scale Prediction of LncRNA Functions by Using the KATZ Measure Based on Multiple Networks
【24h】

KATZLGO: Large-Scale Prediction of LncRNA Functions by Using the KATZ Measure Based on Multiple Networks

机译:KATZLGO:使用基于多个网络的KATZ量度来大规模预测LncRNA功能

获取原文
获取原文并翻译 | 示例

摘要

Aggregating evidences have shown that long non-coding RNAs (lncRNAs) generally play key roles in cellular biological processes such as epigenetic regulation, gene expression regulation at transcriptional and post-transcriptional levels, cell differentiation, and others. However, most lncRNAs have not been functionally characterized. There is an urgent need to develop computational approaches for function annotation of increasing available lncRNAs. In this article, we propose a global network-based method, KATZLGO, to predict the functions of human lncRNAs at large scale. A global network is constructed by integrating three heterogeneous networks: lncRNA-lncRNA similarity network, lncRNA-protein association network, and protein-protein interaction network. The KATZ measure is then employed to calculate similarities between lncRNAs and proteins in the global network. We annotate lncRNAs with Gene Ontology (GO) terms of their neighboring protein-coding genes based on the KATZ similarity scores. The performance of KATZLGO is evaluated on a manually annotated lncRNA benchmark and a protein-coding gene benchmark with known function annotations. KATZLGO significantly outperforms state-of-the-art computational method both in maximum F-measure and coverage. Furthermore, we apply KATZLGO to predict functions of human lncRNAs and successfully map 12,318 human lncRNA genes to GO terms.
机译:越来越多的证据表明,长的非编码RNA(lncRNA)通常在细胞生物学过程中发挥关键作用,例如表观遗传调控,转录和转录后水平的基因表达调控,细胞分化等。但是,大多数lncRNA尚未进行功能鉴定。迫切需要开发用于增加可用lncRNA的功能注释的计算方法。在本文中,我们提出了一种基于全球网络的方法KATZLGO,以大规模预测人类lncRNA的功能。通过整合三个异构网络构建全球网络:lncRNA-lncRNA相似性网络,lncRNA-蛋白质关联网络和蛋白质-蛋白质相互作用网络。然后,使用KATZ度量来计算全局网络中lncRNA与蛋白质之间的相似性。我们基于KATZ相似性评分,使用邻近蛋白质编码基因的基因本体(GO)术语对lncRNA进行注释。在手动注释的lncRNA基准和具有已知功能注释的蛋白质编码基因基准上评估KATZLGO的性能。 KATZLGO在最大F测度和覆盖率上均大大优于最新的计算方法。此外,我们将KATZLGO应用到人类lncRNA的功能预测中,并成功将12,318个人类lncRNA基因映射到GO术语。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号