首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >KATZLGO: Large-Scale Prediction of LncRNA Functions by Using the KATZ Measure Based on Multiple Networks
【24h】

KATZLGO: Large-Scale Prediction of LncRNA Functions by Using the KATZ Measure Based on Multiple Networks

机译:Katzlgo:使用基于多个网络的KATZ测量来实现LNCRNA功能的大规模预测

获取原文
获取原文并翻译 | 示例

摘要

Aggregating evidences have shown that long non-coding RNAs (lncRNAs) generally play key roles in cellular biological processes such as epigenetic regulation, gene expression regulation at transcriptional and post-transcriptional levels, cell differentiation, and others. However, most lncRNAs have not been functionally characterized. There is an urgent need to develop computational approaches for function annotation of increasing available lncRNAs. In this article, we propose a global network-based method, KATZLGO, to predict the functions of human lncRNAs at large scale. A global network is constructed by integrating three heterogeneous networks: lncRNA-lncRNA similarity network, lncRNA-protein association network, and protein-protein interaction network. The KATZ measure is then employed to calculate similarities between lncRNAs and proteins in the global network. We annotate lncRNAs with Gene Ontology (GO) terms of their neighboring protein-coding genes based on the KATZ similarity scores. The performance of KATZLGO is evaluated on a manually annotated lncRNA benchmark and a protein-coding gene benchmark with known function annotations. KATZLGO significantly outperforms state-of-the-art computational method both in maximum F-measure and coverage. Furthermore, we apply KATZLGO to predict functions of human lncRNAs and successfully map 12,318 human lncRNA genes to GO terms.
机译:聚集证据表明,长期的非编码RNA(LNCRNA)通常在细胞生物学过程中扮演关键作用,例如在转录和转录后水平,细胞分化等中的表述调节,基因表达调节。然而,大多数LNCRNA没有在功能上表征。迫切需要开发用于增加可用LNCRNA的功能注释的计算方法。在本文中,我们提出了一种全球基于网络的方法Katzlgo,以预测大规模人类LNCRNA的功能。通过整合三个异构网络来构建全局网络:LNCRNA-LNCRNA相似性网络,LNCRNA-蛋白质结合网络和蛋白质 - 蛋白质相互作用网络。然后采用KATZ测量来计算全球网络中LNCRNA和蛋白质之间的相似性。基于KATZ相似度分数,我们用基因本体编码基因进行了基因本体(GO)术语的LNCRNA。 Katzlgo的性能是在手动注释的LNCRNA基准测试和具有已知功能注释的蛋白质编码基因基准测试中的性能。 Katzlgo在最大F测量和覆盖范围内显着优于最先进的计算方法。此外,我们应用Katzlgo预测人类LNCRNA的功能,并成功地映射12,318个人LNCRNA基因进行术语。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号