首页> 外文期刊>IEEE/ACM transactions on computational biology and bioinformatics >Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis
【24h】

Arrhythmia Recognition and Classification Using ECG Morphology and Segment Feature Analysis

机译:心电图形态学和节段特征分析的心律失常识别和分类

获取原文
获取原文并翻译 | 示例

摘要

In this work, arrhythmia appearing with the presence of abnormal heart electrical activity is efficiently recognized and classified. A novel method is proposed for accurate recognition and classification of cardiac arrhythmias. Firstly, P-QRS-T waves is segmented from ECG waveform; secondly, morphological features are extracted from P-QRS-T waves, and ECG segment features are extracted from the selected ECG segment by using PCA and dynamic time warping(DTW); finally, SVM is applied to the features and automatic diagnosis results is presented. ECG data set used is derived from the MIT-BIH in which ECG signals are divided into the four classes: normal beats(N), supraventricular ectopic beats (SVEBs), ventricular ectopic beats (VEBs) and fusion of ventricular and normal (F). Our proposed method can distinguish N, SVEBs, VEBs and F with an accuracy of 97.80 percent. The sensitivities for the classes N, SVEBs, VEBs and F are 99.27, 87.47, 94.71, and 73.88 percent and the positive predictivities are 98.48, 95.25, 95.22 and 86.09 percent respectively. The detection sensitivity of SVEBs and VEBs has a better performance by combining proposed features than by using the ECG morphology or ECG segment features separately. The proposed method is compared with four selected peer algorithms and delivers solid results.
机译:在这项工作中,可以有效地识别并分类出现异常心电活动而出现的心律不齐。提出了一种新的方法,用于心律不齐的准确识别和分类。首先,从心电波形中分离出P-QRS-T波;其次,利用PCA和动态时间规整(DTW)从P-QRS-T波中提取形态特征,从选定的ECG片段中提取ECG片段特征。最后,将支持向量机应用于该特征并给出自动诊断结果。使用的ECG数据集来自MIT-BIH,其中ECG信号分为四类:正常搏动(N),室上性异位搏动(SVEB),室性异位搏动(VEB)以及心室与正常融合(F) 。我们提出的方法可以区分N,SVEB,VEB和F,准确性为97.80%。 N,SVEB,VEB和F类的敏感度分别为99.27%,87.47%,94.71%和73.88%,阳性预测率分别为98.48%,95.25%,95.22%和86.09%。通过组合建议的功能,与单独使用ECG形态或ECG片段功能相比,SVEB和VEB的检测灵敏度具有更好的性能。将该方法与四种选定的对等算法进行了比较,并给出了可靠的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号