首页> 外文期刊>Human-computer interaction >A Predictive Model of Human Performance With Scrolling and Hierarchical Lists
【24h】

A Predictive Model of Human Performance With Scrolling and Hierarchical Lists

机译:具有滚动列表和分层列表的人类绩效预测模型

获取原文
获取原文并翻译 | 示例

摘要

Many interactive tasks in graphical user interfaces involve finding an item in a list but with the item not currently in sight. The two main ways of bringing the item into view are scrolling of one-dimensional lists and expansion of a level in a hierarchical list. Examples include selecting items in hierarchical menus and navigating through "tree" browsers to find files, folders, commands, or e-mail messages. System designers are often responsible for the structure and layout of these components, yet prior research provides conflicting results on how different structures and layouts affect user performance. For example, empirical research disagrees on whether the time to acquire targets in a scrolling list increases linearly or logarithmically with the length of the list; similarly, experiments have produced conflicting results for the comparative efficacy of "broad and shallow" versusrn"narrow and deep" hierarchical structures. In this article we continue in the human-computer interaction tradition of bringing theory to the debate, demonstrating that prior results regarding scrolling and hierarchical navigation are theoretically predictable and that the divergent results can be explained by the impact of the dataset's organization and the user's familiarity with the dataset. We argue and demonstrate that when users can anticipate the location of items in the list, the time to acquire them is best modeled by functions that are logarithmic with list length and that linear models arise when anticipation cannot be used. We then propose a formal model of item selection from hierarchical lists, which we validate by comparing its predictions with empirical data from prior studies and from our own. The model also accounts for the transition from novice to expert behavior with different datasets.
机译:图形用户界面中的许多交互式任务都涉及在列表中查找某个项目,但当前看不到该项目。使项目可见的两种主要方法是滚动一维列表和扩展层次结构列表中的级别。示例包括在分层菜单中选择项目,并在“树”浏览器中导航以查找文件,文件夹,命令或电子邮件。系统设计人员通常负责这些组件的结构和布局,但是先前的研究就不同的结构和布局如何影响用户性能提供了相互矛盾的结果。例如,关于滚动列表中获取目标的时间是随着列表的长度线性增加还是对数增加,经验研究不一致。类似地,对于“宽而浅”与“窄而深”的层次结构的比较功效,实验产生了矛盾的结果。在本文中,我们继续沿袭人机交互的传统,将理论带入辩论,证明关于滚动和分层导航的先前结果在理论上是可预测的,并且不同的结果可以通过数据集组织的影响和用户的熟悉程度来解释。与数据集。我们争论并证明,当用户可以预期列表中项目的位置时,获取它们的时间最好由与列表长度成对数的函数建模,并且当无法使用预期时会出现线性模型。然后,我们提出了一个从分层列表中选择项目的正式模型,我们通过将其预测与先前研究和我们自己的经验数据进行比较来验证这一模型。该模型还考虑了使用不同数据集从新手到专家行为的转变。

著录项

  • 来源
    《Human-computer interaction》 |2009年第3期|273-314|共42页
  • 作者

    Andy Cockburn; Carl Gutwin;

  • 作者单位

    University of Canterbury;

    University of Saskatchewan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号