首页> 外文期刊>GIScience & remote sensing >Mapping Burn Severity of Mediterranean-Type Vegetation Using Satellite Multispectral Data
【24h】

Mapping Burn Severity of Mediterranean-Type Vegetation Using Satellite Multispectral Data

机译:利用卫星多光谱数据绘制地中海型植被的烧伤严重程度

获取原文
获取原文并翻译 | 示例

摘要

Knowledge of the spatial distribution of burn severity immediately following a fire is needed to locate areas requiring management for environmental impacts and timber salvage, and for validation of fire risk and fire behavior models. We evaluated methods for mapping post-fire burn severity in southern California Mediterranean-type ecosystems using satellite images calibrated and validated by field-collected data. The effects of spectral transforms, temporal dimensionality, classifiers, and sensor type on the accuracy of burn severity classification were analyzed. We mapped and analyzed the distributions of five categories of bum severity or land cover for two southern California wildfires based primarily on classification of Landsat TM/ETM+ data, with IKONOS MS data also being evaluated. Map accuracy was assessed relative to field-based classification of burn severity of randomly located plots, using the Composite Burn Index approach. Maps based on the multi-temporal Kauth Thomas transform of Landsat TM/ETM+ data and maximum likelihood classifier had the highest overall accuracy (64 and 55%) and kappa values (0.51 and 0.37) for the two study areas. Forested lands were classified at a much higher level of accuracy (overall accuracy near 80%), while accurate classification of burn severity in shrublands was more challenging (overall accuracy less than 50%). The lower stature vegetation of shrublands typically experiences crown-burning fires, such that range of burn severity for shrublands is more limited.
机译:需要火灾后立即了解烧伤严重程度的空间分布,以找到需要管理环境影响和木材救助以及验证火灾风险和火灾行为模型的区域。我们使用通过实地收集的数据校准和验证的卫星图像,评估了绘制加利福尼亚南部地中海型生态系统火灾后严重程度的方法。分析了光谱变换,时间维数,分类器和传感器类型对烧伤严重程度分类准确性的影响。我们主要基于Landsat TM / ETM +数据的分类,绘制并分析了两次南加州野火的五类烧伤严重性或土地覆盖的分布,同时还评估了IKONOS MS数据。使用“复合燃烧指数”方法,相对于基于随机分布地块的燃烧严重性的基于现场的分类,评估了地图准确性。基于Landsat TM / ETM +数据的多时间Kauth Thomas变换和最大似然分类器的地图在两个研究区域中具有最高的总体准确性(64和55%)和kappa值(0.51和0.37)。林地的准确度等级要高得多(总体准确度接近80%),而灌木丛中烧伤严重程度的准确分类更具挑战性(总体准确度小于50%)。灌木丛低矮的植被通常会遭受树冠燃烧,因此灌木丛的严重烧伤程度受到限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号