首页> 外文期刊>GIScience & remote sensing >A geostatistical temporal mixture analysis approach to address endmember variability for estimating regional impervious surface distributions
【24h】

A geostatistical temporal mixture analysis approach to address endmember variability for estimating regional impervious surface distributions

机译:地统计时空混合分析方法,用于解决端构件的变异性,以估计区域不透水的表面分布

获取原文
获取原文并翻译 | 示例

摘要

Spectral mixture analysis (SMA) is a major approach for estimating fractional land covers through modeling the relationship between the spectral signatures of a mixed remote sensing pixel and those of the comprised pure land covers (also termed as endmembers). When SMA is implemented, endmember variability has proven to have significant impact on the accuracy of land cover fraction estimates. To address the endmember variability problem, this article developed a geostatistical temporal mixture analysis (GTMA) technique, with which spatially varying per-pixel endmember sets were estimated using an ordinary kriging interpolation technique. The method was applied to time-series moderate-resolution imaging spectroradiometer normalized difference vegetation index imagery in Wisconsin and North Carolina, United States to estimate regional impervious surface distributions. Analysis of results suggests that GTMA has achieved a promising accuracy. Detailed analysis indicates that a better performance has been achieved in less-developed areas than developed areas, and slight underestimation and slight overestimation have been detected in developed areas and less-developed areas, respectively. Moreover, while the performance of GTMA is comparable to those of phenology-based TMA and phenology-based multiple endmember TMA over the entire study area and in less-developed areas, a much better performance has been achieved in developed areas. Finally, this article argues that endmember variability may be more essential in developed areas when compared to less-developed areas.
机译:光谱混合分析(SMA)是通过对混合遥感像素的光谱特征与所包含的纯净土地特征(也称为末端成员)的光谱特征之间的关系进行建模来估算局部土地特征的一种主要方法。当实施SMA时,事实证明末端成员的可变性对土地覆盖率估算的准确性有重大影响。为了解决端构件可变性问题,本文开发了一种地统计时间混合分析(GTMA)技术,利用该技术,可以使用常规的克里格插值技术估算每个像素端构件在空间上的变化。该方法应用于美国威斯康星州和北卡罗来纳州的时间序列中分辨率成像光谱仪归一化差异植被指数成像,以估计区域不透水的表面分布。结果分析表明,GTMA已实现了令人鼓舞的准确性。详细的分析表明,在欠发达地区比发达地区取得了更好的绩效,在发达地区和欠发达地区分别发现了轻微的低估和轻微的高估。而且,尽管在整个研究区域和欠发达地区,GTMA的性能可与基于物候的TMA和基于物候的多末端成员TMA媲美,但在发达地区已取得了更好的性能。最后,本文认为,与欠发达地区相比,末端成员的可变性在发达地区可能更为重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号