首页> 外文期刊>Genetic programming and evolvable machines >Deployment of parallel linear genetic programming using GPUs on PC and video game console platforms
【24h】

Deployment of parallel linear genetic programming using GPUs on PC and video game console platforms

机译:在PC和视频游戏机平台上使用GPU部署并行线性遗传编程

获取原文
获取原文并翻译 | 示例

摘要

We present a general method for deploying parallel linear genetic programming (LGP) to the PC and Xbox 360 video game console by using a publicly available common framework for the devices called XNA (for "XNA's Not Acronymed"). By constructing the LGP within this framework, we effectively produce an LGP "game" for PC and XBox 360 that displays results as they evolve. We use the GPU of each device to parallelize fitness evaluation and the mutation operator of the LGP algorithm, thus providing a general LGP implementation suitable for parallel computation on heterogeneous devices. While parallel GP implementations on PCs are now common, both the implementation of GP on a video game console using GPU and the construction of a GP around a framework for heterogeneous devices are novel contributions. The objective of this work is to describe how to implement the parallel execution of LGP in order to use the underlying hardware (especially GPU) on the different platforms while still maintaining loyalty to the general methodology of the LGP algorithm built for the common framework. We discuss the implementation of texture-based data structures and the sequential and parallel algorithms built for their use on both CPU and GPU. Following the description of the general algorithm, the particular tailoring of the implementations for each hardware platform is described. Sequential (CPU) and parallel (GPU-based) algorithm performance is compared on both PC and video game platforms using the metrics of GP operations per second, actual time elapsed,rnspeedup of parallel over sequential implementation, and percentage of execution time used by the GPU versus CPU.
机译:通过使用称为XNA(“ XNA's Not Acronymed”)的设备的公共可用通用框架,我们提出了一种将并行线性遗传编程(LGP)部署到PC和Xbox 360视频游戏机的通用方法。通过在此框架内构建LGP,我们有效地为PC和XBox 360制作了一个LGP“游戏”,该游戏可以显示结果。我们使用每个设备的GPU来使适应性评估和LGP算法的变异算子并行化,从而提供适用于异构设备上并行计算的通用LGP实现。虽然现在在PC上并行GP的实现很普遍,但是使用GPU在视频游戏机上实现GP以及围绕异构设备框架构建GP都是新的贡献。这项工作的目的是描述如何实现LGP的并行执行,以便在不同平台上使用底层硬件(尤其是GPU),同时仍然忠于为通用框架构建的LGP算法的通用方法。我们讨论了基于纹理的数据结构的实现以及为在CPU和GPU上使用而建立的顺序和并行算法。在描述了通用算法之后,描述了针对每个硬件平台的实现的特定定制。在PC和视频游戏平台上,使用每秒GP操作数,实际经过的时间,并行执行顺序加速的度量以及执行时间百分比来比较PC和视频游戏平台上的顺序(CPU)和并行(基于GPU)算法的性能。 GPU与CPU。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号