首页> 外文期刊>Genetic programming and evolvable machines >Balanced Cartesian Genetic Programming via migration and opposition-based learning: application to symbolic regression
【24h】

Balanced Cartesian Genetic Programming via migration and opposition-based learning: application to symbolic regression

机译:通过迁移和基于对立的学习实现均衡的笛卡尔遗传规划:在符号回归中的应用

获取原文
获取原文并翻译 | 示例

摘要

The exploration-exploitation trade-off is an important aspect of evolutionary algorithms which determines the efficiency and accuracy of these algorithms. Cartesian Genetic Programming (CGP) is a generalization of the graph based genetic programming. It is implemented with mutation only and does not have any possibility to share information among solutions. The main goal of this paper is to present an effective method for balancing the exploration and exploitation of CGP referred to as Balanced Cartesian Genetic Programming (BCGP) by incorporating distinctive features from biogeography-based optimization (BBO) and opposition-based learning. To achieve this goal, we apply BBO's migration operator without considering any modifications in the representation of CGP. This operator has good exploitation ability and can be used to share information among individuals in CGP. In addition, in order to improve the exploration ability of CGP, a new mutation operator is integrated into CGP inspired from the concept of opposition-based learning. Experiments have been conducted on symbolic regression. The experimental results show that the proposed BCGP method outperforms the traditional CGP in terms of accuracy and the convergence speed.
机译:勘探与开发之间的权衡是进化算法的重要方面,它决定了这些算法的效率和准确性。笛卡尔遗传规划(CGP)是基于图的遗传规划的概括。它仅通过变异实现,没有任何可能在解决方案之间共享信息。本文的主要目的是通过结合基于生物地理的优化(BBO)和基于对立的学习的独特功能,提出一种有效的方法来平衡对CGP的探索和开发,称为平衡笛卡尔遗传规划(BCGP)。为了实现此目标,我们使用BBO的迁移运算符,而无需考虑对CGP表示形式的任何修改。该操作员具有良好的利用能力,可用于在CGP中的个人之间共享信息。此外,为了提高CGP的探索能力,从基于对立的学习概念的启发中,将新的变异算子集成到CGP中。已经对符号回归进行了实验。实验结果表明,提出的BCGP方法在准确性和收敛速度上均优于传统的CGP方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号