首页> 外文期刊>Evolutionary computation >A Simple Approach to Lifetime Learning in Genetic Programming-Based Symbolic Regression
【24h】

A Simple Approach to Lifetime Learning in Genetic Programming-Based Symbolic Regression

机译:基于遗传编程的符号回归的终身学习的简单方法

获取原文
获取原文并翻译 | 示例

摘要

Genetic programming (GP) coarsely models natural evolution to evolve computer programs. Unlike in nature, where individuals can often improve their fitness through lifetime experience, the fitness of GP individuals generally does not change during their lifetime, and there is usually no opportunity to pass on acquired knowledge. This paper introduces the Chameleon system to address this discrepancy and augment GP with lifetime learning by adding a simple local search that operates by tuning the internal nodes of individuals. Although not the first attempt to combine local search with GP, its simplicity means that it is easy to understand and cheap to implement. A simple cache is added which leverages the local search to reduce the tuning cost to a small fraction of the expected cost, and we provide a theoretical upper limit on the maximum tuning expense given the average tree size of the population and show that this limit grows very conservatively as the average tree size of the population increases. We show that Chameleon uses available genetic material more efficiently by exploring more actively than with standard GP, and demonstrate that not only does Chameleon outperform standard GP (on both training and test data) over a number of symbolic regression type problems, it does so by producing smaller individuals and it works harmoniously with two other well-known extensions to GP, namely, linear scaling and a diversity-promoting tournament selection method.
机译:基因编程(GP)可以粗略地模拟自然进化以进化计算机程序。与自然界不同​​,在自然界中,个人通常可以通过一生的经验来提高自己的适应能力,而GP个体的适应能力通常在其一生中都不会改变,并且通常没有机会传递获得的知识。本文介绍了Chameleon系统,以解决此差异并通过添加简单的本地搜索(通过调整个体的内部节点来进行操作)来通过终身学习来扩大GP。尽管不是首次尝试将本地搜索与GP结合起来,但它的简单性意味着易于理解且易于实现。添加了一个简单的缓存,该缓存利用本地搜索将调整成本降低到了预期成本的一小部分,并且鉴于总体树的平均大小,我们提供了最大调整费用的理论上限,并且表明该限制在增长随人口平均树大小的增加而非常保守。我们证明,变色龙通过比标准GP更积极地探索,可以更有效地利用可用的遗传物质,并且证明了变色龙不仅在许多符号回归类型问题上都优于标准GP(在训练和测试数据上),而且通过产生较小的个体,并且它与GP的其他两个众所周知的扩展(线性缩放和促进多样性的锦标赛选择方法)协调工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号