首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Constructing a No-Reference H.264/AVC Bitstream-Based Video Quality Metric Using Genetic Programming-Based Symbolic Regression
【24h】

Constructing a No-Reference H.264/AVC Bitstream-Based Video Quality Metric Using Genetic Programming-Based Symbolic Regression

机译:使用基于遗传编程的符号回归构建无参考的基于H.264 / AVC比特流的视频质量指标

获取原文
获取原文并翻译 | 示例

摘要

In order to ensure optimal quality of experience toward end users during video streaming, automatic video quality assessment becomes an important field-of-interest to video service providers. Objective video quality metrics try to estimate perceived quality with high accuracy and in an automated manner. In traditional approaches, these metrics model the complex properties of the human visual system. More recently, however, it has been shown that machine learning approaches can also yield competitive results. In this paper, we present a novel no-reference bitstream-based objective video quality metric that is constructed by genetic programming-based symbolic regression. A key benefit of this approach is that it calculates reliable white-box models that allow us to determine the importance of the parameters. Additionally, these models can provide human insight into the underlying principles of subjective video quality assessment. Numerical results show that perceived quality can be modeled with high accuracy using only parameters extracted from the received video bitstream.
机译:为了确保在视频流传输过程中获得针对最终用户的最佳体验质量,自动视频质量评估已成为视频服务提供商的重要兴趣领域。客观的视频质量指标试图以自动化的方式高精度估计感知的质量。在传统方法中,这些指标模拟了人类视觉系统的复杂属性。但是,最近发现,机器学习方法也可以产生竞争性结果。在本文中,我们提出了一种新的无参考基于比特流的客观视频质量度量,该度量是通过基于遗传编程的符号回归构建的。这种方法的主要好处是它可以计算出可靠的白盒模型,从而使我们能够确定参数的重要性。此外,这些模型可以使人们深入了解主观视频质量评估的基本原理。数值结果表明,仅使用从接收到的视频比特流中提取的参数,就可以对感知质量进行高精度建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号