首页> 外文学位 >Cross-Layer Schemes for Enhancing H.264/AVC Video Quality over Wireless Channels.
【24h】

Cross-Layer Schemes for Enhancing H.264/AVC Video Quality over Wireless Channels.

机译:用于提高无线信道上的H.264 / AVC视频质量的跨层方案。

获取原文
获取原文并翻译 | 示例

摘要

Rapid growth of video applications over wireless networks is overwhelming the wireless bandwidth. Since video applications demand large bandwidth and real-time transmission, supporting the rapidly increasing video traffic over the bandwidth-limited, error-prone, and time-varying wireless channels is very challenging. As a result, the video applications are likely to suffer packet losses over wireless networks which results in quality degradation. In this dissertation, we design a distortion prediction model for H.264/AVC compressed video streams, and use it for designing novel cross-layer protocols for enhancing the video quality by making more efficient use of the available wireless resources.;The cumulative mean squared error (CMSE) is a widely used measure of video distortion. However, CMSE measurement is a time-consuming and computationally-intensive process which is not suitable for many video applications. A low-complexity and low-delay generalized linear model is proposed for predicting CMSE contributed by the loss of H.264 AVC encoded video slices. The model is trained over a video database by using a combination of video factors that are extracted during the encoding of the current frame, without using any data from future frames in the group of pictures (GOP). The slices are then prioritized within a GOP based on their predicted CMSE values. The accuracy of the CMSE prediction model is analyzed using cross-validation, analysis of variance, and correlation coefficients. The simulations are carried out to evaluate the performance of the CMSE prediction model for varying encoder configurations and bit rates of test videos.;The CMSE slice prediction model is used to design an unequal error protection (UEP) scheme, using the rate-compatible punctured convolutional (RCPC) codes over wireless channels. This scheme provides protection to the video slices against the channel errors, based on their priority, in order to minimize the video distortion. An application of our slice prioritization is demonstrated by implementing a priority-aware slice discard scheme, where the low-priority slices are dropped from the router when the network experiences congestion. Additionally, the GOP-level slice prioritization is extended to the frame-level slice prioritization, and its performance is evaluated over the additive white Gaussian noise (AWGN) channels.;The idea of using slice CMSE prediction is extended to adapt the video packet size to the wireless channel conditions, in order to minimize the video distortion. A real-time, priority-aware joint packet fragmentation and error protection scheme for real-time video transmission over Rayleigh fading channels is presented. The fragment error rates (FERs) are simulated for a combination of different fragment sizes and RCPC code rates. These FERs are then used to determine the optimal fragment sizes and code rates for packets of each priority class by minimizing the expected normalized predicted CMSE per GOP in H.264 video bit stream. An improvement in the received video quality over the conventional and priority-agnostic packet fragmentation schemes is observed.;Next, a cross-layer, priority-aware scheduling scheme for real-time transmission of multiple video applications over a time-varying channel is developed. Each video application considered has different characteristics such as user priority, latency, distortion, size, and encoding bit rate. A cost function is optimized to determine the scheduling order for video frames. The performance of our scheme is compared with that of the CMSE based scheme, where the frames are rank-ordered for transmission using its CMSE per bit values, and with the earliest deadline first (EDF) scheme in which each user takes turns to transmit a frame.;A collaborative effort with other researchers and developed two additional cross-layer error protection schemes. In the first scheme, a cross layer UEP scheme that jointly assigned FEC at both the Application layer (using Luby Transform) and the Physical layer (using RCPC codes) for prioritized video transmission is developed. The video distortion function is minimized by using the genetic algorithm (GA). The performance of our scheme is evaluated for different channel SNR values. In the second UEP scheme, a framework that combined the RCPC codes and concatenated it with hierarchical quadrature amplitude modulation (QAM) is investigated. Employing RCPC codes and hierarchical modulation jointly resulted in greater flexibility as some parts of the data can be protected only by the hierarchical modulation while others may be protected by a low FEC code rate. The performance of the proposed scheme is compared to the standard 8-QAM with symmetric constellation.
机译:无线网络上视频应用的快速增长淹没了无线带宽。由于视频应用需要大带宽和实时传输,因此在带宽受限,易出错且时变的无线通道上支持快速增长的视频流量非常具有挑战性。结果,视频应用可能会遭受无线网络上的分组丢失,从而导致质量下降。本文设计了一种H.264 / AVC压缩视频流的失真预测模型,并将其用于设计新颖的跨层协议,通过更有效地利用可用无线资源来提高视频质量。平方误差(CMSE)是视频失真的一种广泛使用的度量。但是,CMSE测量是一个耗时且计算量大的过程,不适用于许多视频应用。提出了一种低复杂度,低延迟的广义线性模型,用于预测由H.264 AVC编码视频片段丢失引起的CMSE。通过使用在当前帧的编码期间提取的视频因子的组合,在视频数据库上训练模型,而无需使用图片组(GOP)中来自将来帧的任何数据。然后,根据切片的预测CMSE值在GOP中对切片进行优先级排序。使用交叉验证,方差分析和相关系数来分析CMSE预测模型的准确性。进行仿真以评估CMSE预测模型在变化的编码器配置和测试视频的比特率下的性能。CMSE slice预测模型用于通过速率兼容删余设计不等错误保护(UEP)方案。无线信道上的卷积(RCPC)码。该方案基于优先级为视频切片提供针对通道错误的保护,以最大程度地降低视频失真。通过实现优先级感知的分片丢弃方案来演示我们的分片优先级的应用,该方案中,当网络出现拥塞时,低优先级分片会从路由器中删除。此外,将GOP级切片优先级扩展到帧级切片优先级,并在加性高斯白噪声(AWGN)通道上评估其性能。;扩展了使用切片CMSE预测的思想以适应视频数据包的大小在无线信道条件下,以最小化视频失真。提出了一种在瑞利衰落信道上实时视频传输的实时,优先级感知的联合数据包分段和错误保护方案。针对不同片段大小和RCPC码率的组合,模拟了片段错误率(FER)。然后,通过将H.264视频比特流中每个GOP的预期归一化预测CMSE最小化,可以将这些FER用于确定每个优先级类别的数据包的最佳片段大小和编码率。观察到与常规的和优先级无关的分组分段方案相比,接收视频质量有所提高。接下来,开发了一种跨层,优先级调度方案,用于在时变信道上实时传输多个视频应用程序。所考虑的每个视频应用程序具有不同的特性,例如用户优先级,等待时间,失真,大小和编码比特率。优化成本函数以确定视频帧的调度顺序。我们的方案的性能与基于CMSE的方案的性能进行了比较,后者基于帧的CMSE每比特值对帧进行排序以进行传输,并与最早的截止期限优先(EDF)方案进行了比较,在该方案中,每个用户轮流发送框架;与其他研究人员的共同努力,并开发了两个附加的跨层错误保护方案。在第一种方案中,开发了一种跨层UEP方案,该方案在应用程序层(使用Luby变换)和物理层(使用RCPC代码)上共同分配了FEC,用于优先视频传输。通过使用遗传算法(GA),可以将视频失真功能最小化。我们针对不同的信道SNR值评估了该方案的性能。在第二种UEP方案中,研究了将RCPC代码组合起来并与分层正交幅度调制(QAM)进行级联的框架。 RCPC代码和分层调制共同使用会带来更大的灵活性,因为数据的某些部分只能通过分层调制来保护,而其他部分则可以通过低FEC编码率来保护。将该方案的性能与具有对称星座的标准8-QAM进行了比较。

著录项

  • 作者

    Paluri, Seethal.;

  • 作者单位

    The Claremont Graduate University.;

  • 授予单位 The Claremont Graduate University.;
  • 学科 Electrical engineering.;Mathematics.;Computer science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号