首页> 外文期刊>Genetic programming and evolvable machines >Subtree semantic geometric crossover for genetic programming
【24h】

Subtree semantic geometric crossover for genetic programming

机译:用于遗传规划的子树语义几何交叉

获取原文
获取原文并翻译 | 示例

摘要

The semantic geometric crossover (SGX) proposed by Moraglio et al. has achieved very promising results and received great attention from researchers, but has a significant disadvantage in the exponential growth in size of the solutions. We propose a crossover operator named subtree semantic geometric crossover (SSGX), with the aim of addressing this issue. It is similar to SGX but uses subtree semantic similarity to approximate the geometric property. We compare SSGX to standard crossover (SC), to SGX, and to other recent semantic-based crossover operators, testing on several symbolic regression problems. Overall our new operator out-performs the other operators on test data performance, and reduces computational time relative to most of them. Further analysis shows that while SGX is rather exploitative, and SC rather explorative, SSGX achieves a balance between the two. A simple method of further enhancing SSGX performance is also demonstrated.
机译:Moraglio等人提出的语义几何交叉(SGX)。已经取得了令人鼓舞的结果,并引起了研究人员的极大关注,但是在解决方案尺寸的指数增长方面却具有明显的劣势。为了解决这个问题,我们提出了一个名为子树语义几何交叉(SSGX)的交叉算子。它类似于SGX,但使用子树语义相似度来近似几何属性。我们将SSGX与标准交叉(SC),SGX和其他最近的基于语义的交叉运算符进行了比较,对几个符号回归问题进行了测试。总体而言,我们的新运算符在测试数据性能方面优于其他运算符,并且相对于大多数运算符而言,它们减少了计算时间。进一步的分析表明,尽管SGX具有相当的开发性,而SC具有相当的探索性,但SSGX可以在两者之间取得平衡。还展示了一种进一步增强SSGX性能的简单方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号