首页> 外文期刊>Genetic programming and evolvable machines >Evolving hierarchical memory-prediction machines in multi-task reinforcement learning
【24h】

Evolving hierarchical memory-prediction machines in multi-task reinforcement learning

机译:在多任务强化学习中发展的分层内存预测机器

获取原文
获取原文并翻译 | 示例

摘要

A fundamental aspect of intelligent agent behaviour is the ability to encode salient features of experience in memory and use these memories, in combination with current sensory information, to predict the best action for each situation such that long-term objectives are maximized. The world is highly dynamic, and behavioural agents must generalize across a variety of environments and objectives over time. This scenario can be modeled as a partially-observable multi-task reinforcement learning problem. We use genetic programming to evolve highly-generalized agents capable of operating in six unique environments from the control literature, including OpenAI's entire Classic Control suite. This requires the agent to support discrete and continuous actions simultaneously. No task-identification sensor inputs are provided, thus agents must identify tasks from the dynamics of state variables alone and define control policies for each task. We show that emergent hierarchical structure in the evolving programs leads to multi-task agents that succeed by performing a temporal decomposition and encoding of the problem environments in memory. The resulting agents are competitive with task-specific agents in all six environments. Furthermore, the hierarchical structure of programs allows for dynamic run-time complexity, which results in relatively efficient operation.
机译:智能代理行为的基本方面是能够在内存中编码经验的突出特征,并与当前的感官信息组合使用这些存储器,以预测每种情况的最佳动作,使得长期目标最大化。世界是高度动态的,行为代理必须随着时间的推移概括各种环境和目标。这种情况可以被建模为部分可观察到的多任务加强学习问题。我们使用遗传编程来发展能够从控制文献中的六个独特环境中运行的高度广义推广剂,包括Openai的整个经典控制套件。这要求代理同时支持离散和连续行动。没有提供任务识别传感器输入,因此代理必须单独地确定来自状态变量的动态的任务,并为每个任务定义控制策略。我们表明,不断发展的程序中的紧急分层结构导致通过执行内存中的问题环境的时间分解和编码问题的多任务代理。所得药剂与所有六种环境中的任务特定代理具有竞争力。此外,程序的分层结构允许动态运行时间复杂度,这导致相对有效的操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号