首页> 外文期刊>Fuzzy Sets and Systems >Fuzzy Hough transform and an MLP with fuzzy input/output for character recognition
【24h】

Fuzzy Hough transform and an MLP with fuzzy input/output for character recognition

机译:模糊霍夫变换和带有模糊输入/输出的MLP用于字符识别

获取原文
获取原文并翻译 | 示例

摘要

A near-fuzzy system for character recognition using a fuzzy Hough transform technique is present din this paper. For each character pattern, membership values are determined for a number of fuzzy sets defined on the standard Hough transform accumulator cells. These basic fuzzy sets are combined by t-norms to synthesize additional fuzzy sets whose heights form an n-dimension feature vector for the pattern. A 3n-dimensioanl fuzzy linguistic vector is generated from the n-dimension; feature vector by defining three linguistic fuzzy sets, namely, weak, moderate and strong. The linguistic set membership functions are derived from the Butter worth polynomials and are similar to the gain functions of low-pass, band-pass and high-pass fillets, respectively. A multilayer perception (MLP) is trained with the fuzzy linguistic vectors by the back propagation of errors. The MLP outputs represent fuzzy sets denoting similarity of an input feature vector to a number of character pattern classes. Recognition accuracy of the system is more than 98/100
机译:本文提出了一种基于模糊霍夫变换技术的近模糊字符识别系统。对于每个字符模式,确定在标准霍夫变换累加器单元上定义的许多模糊集的隶属度值。这些基本模糊集通过t范数进行组合以合成其他模糊集,其高度形成该图案的n维特征向量。从n维生成3n维模糊语言向量;通过定义三个语言模糊集(即弱,中和强)来实现特征向量。语言集隶属函数是从值Butter多项式导出的,分别类似于低通,带通和高通圆角的增益函数。通过错误的反向传播,使用模糊语言向量训练多层感知(MLP)。 MLP输出表示模糊集,表示输入特征向量与许多字符模式类的相似性。系统识别精度大于98/100

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号