首页> 外文期刊>Fuzzy Sets and Systems >Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter
【24h】

Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter

机译:遗传算法与卡尔曼滤波混合提取系统建模的模糊规则

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a hybrid algorithm for extracting important fuzzy rules from a given rule base to construct a "parsimonious" fuzzy model with a high generalization ability. Thais algorithm combines the advantages of genetic algorithms' strong search capacity and Kaman filter's fast convergence merit. Each random combination of the rules in the rule base is coded into a binary string and treated as a chromosome in genetic algorithms. The binary string indicates the structure of a fuzzy model. The parameters of the model are then estimated using the Kalman filter. In order to achieve a trade-off between the accuracy and the complexity of a fuzzy mold, the Schwarz-Rissanen Criterion is used as an evaluation function in the hybrid algorithm. The practical applicability of the proposed algorithm is examined by computer simulations on a human operator modeling problem and a nonlinear system modeling problem.
机译:本文提出了一种混合算法,用于从给定的规则库中提取重要的模糊规则,以构建具有较高泛化能力的“简约”模糊模型。 Thais算法结合了遗传算法强大的搜索能力和Kaman滤波器的快速收敛优点。规则库中规则的每个随机组合都被编码为二进制字符串,并在遗传算法中被视为染色体。二进制字符串表示模糊模型的结构。然后使用卡尔曼滤波器估计模型的参数。为了在模糊模具的准确性和复杂性之间取得平衡,在混合算法中将Schwarz-Rissanen标准用作评估函数。通过对人操作员建模问题和非线性系统建模问题的计算机仿真,检验了所提出算法的实际适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号