首页> 外文期刊>Fuzzy sets and systems >Fuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averaging
【24h】

Fuzzy clustering of fuzzy data based on robust loss functions and ordered weighted averaging

机译:基于鲁棒损耗函数的模糊数据模糊聚类和有序加权平均

获取原文
获取原文并翻译 | 示例

摘要

In many real cases the data are not expressed in term of single values but are imprecise. In all these cases, standard clustering methods for single-valued data are unable to properly take into account the imprecise nature of the data. In this paper, by considering the Partitioning Around Medoids (PAM) approach in a fuzzy framework, we propose a fuzzy clustering method for imprecise data formalized in a fuzzy manner. In particular, in order to neutralize the negative effects of possible outlier fuzzy data in the clustering process, we proposed a robust fuzzy c-medoids clustering method for fuzzy data based on the combination of Huber's M-estimators and Yager's OWA (Ordered Weighted Averaging) operators. The proposed method is able to smooth the influence of anomalous data by means of a suitable parameter, the so-called typicality parameter, capable to tune the influence of the outliers. The performance of the proposed method has been shown by means of a simulation study, composed of experiments on: (i) simple two-dimensional dataset, (ii) benchmark datasets and (iii) the fuzzy-art-outliers dataset. The comparison made with the robust clustering methods known from the literature indicates the competitiveness of the introduced method to others. An application of the suggested method to a real dataset is also provided and the results of the method has been compared with other clustering methods suggested in the literature. In the application, the comparative assessment has shown the informational gain (in term of additional information) of the proposed method vs the other robust methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:在许多实际情况下,数据不在单个值期间表示,但是不精确。在所有这些情况下,用于单值数据的标准聚类方法无法正确考虑数据的不精确性。在本文中,考虑到模糊框架中的麦细管(PAM)方法周围的分区,我们提出了一种模糊聚类方法,用于以模糊方式形式化的不精确数据。特别是,为了中和可能的异常模糊数据在聚类过程中的负面影响,我们提出了一种基于Huber的M估算器和Yager OWA的组合的模糊数据的强大模糊C-METOIDS聚类方法(有序加权平均)运营商。所提出的方法能够通过合适的参数来平滑异常数据的影响,即所谓的典型度参数,能够调整异常值的影响。已经通过模拟研究显示了所提出的方法的性能,由实验组成:(i)简单的二维数据集,(ii)基准数据集和(iii)模糊艺术异常数据集。用文献中已知的鲁棒聚类方法制作的比较表明了引入方法对他人的竞争力。还提供了建议的方法对实际数据集的应用,并将该方法的结果与文献中提出的其他聚类方法进行了比较。在申请中,比较评估已经显示了所提出的方法的信息收益(在附加信息中)与其他强大的方法。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号