首页> 中文期刊> 《控制理论与应用》 >基于可靠性的鲁棒模糊聚类

基于可靠性的鲁棒模糊聚类

     

摘要

相比于k-means算法,模糊C均值(FCM)通过引入模糊隶属度,考虑不同数据簇之间的相互作用,进而避免了聚类中心趋同性问题.然而模糊隶属度具有拖尾和翘尾的结构特征,因此使得FCM算法对噪声点和孤立点很敏感;此外,由于FCM算法倾向于将各数据簇均等分,因此算法对数据簇大小也很敏感,对非平衡数据簇聚类效果不佳.针对这些问题,本文提出了基于可靠性的鲁棒模糊聚类算法(RRFCM).该算法基于当前的聚类结果,对样本点进行可靠性分析,利用样本点的可靠性和局部近邻信息,突出不同数据簇之间的可分性,从而提高了算法对噪声的鲁棒性,并且降低了对非平衡数据簇大小的敏感性,得到了泛化性能更好的聚类结果.与相关算法进行对比,RRFCM算法在人造数据集,UCI真实数据集以及图像分割实验中均取得最优的结果.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号