首页> 外文期刊>Fuzzy sets and systems >An extension of the fuzzy unit interval to a tensor product with completely distributive first factor
【24h】

An extension of the fuzzy unit interval to a tensor product with completely distributive first factor

机译:用完全分布的第一因子将模糊单位区间扩展到张量积

获取原文
获取原文并翻译 | 示例

摘要

The original Hutton interval I (L) can algebraically be identified with the tensor product I circle times L of the real unit interval I and a complete lattice L. Due to this, the tensor product M circle times L with M a completely distributive lattice is considered as a generalization of the lattice I (L). When appropriately endowed with an L-topology, the tensor product M circle times L becomes also an L-topological extension of I (L). If M is (sic)-separable (= it has a countable join base free of supercompact elements), many of the L-topological features of I (L) are retained. To wit, Urysohn lemma and Tietze-Urysohn extension theorem for (M circle times L)-valued functions are then proved. The relationship of M circle times L to the L-fuzzy topological modification of M in the sense of D. Zhang and Y.-M. Liu [2 7] is discussed. (C) 2018 Elsevier B.V. All rights reserved.
机译:原始Hutton间隔I(L)可以代数为张量积I乘以实际单位间隔I的L乘以L并得到一个完整的格子L。因此,张量积M乘以L的L乘以一个完整的分布格子是被认为是晶格I(L)的推广。当适当地赋予L拓扑时,张量积M圈乘以L也会成为I的L拓扑扩展。如果M是(sic)可分离的(=它具有可数的无超紧凑元素的连接基),则将保留I(L)的许多L拓扑特征。进而证明了(M圈乘以L)值函数的Urysohn引理和Tietze-Urysohn扩展定理。在D. Zhang和Y.-M的意义上,M圈乘以L与M的L模糊拓扑修改的关系。 Liu [2 7]被讨论。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号