首页> 外文期刊>Fuzzy sets and systems >A hierarchical fuzzy-clustering approach to fuzzy modeling
【24h】

A hierarchical fuzzy-clustering approach to fuzzy modeling

机译:模糊建模的分层模糊聚类方法

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new method for fuzzy modeling based on a hierarchical fuzzy-clustering scheme. The method consists of a sequence of steps aiming towards developing a Takagi-Sugeno (TS) fuzzy model of optimal structure, where the fuzzy sets in the premise part are of Gaussian type. Starting from an initial ordinary fuzzy partition of the input space, the algorithm performs a nearest-neighbor search and groups the original input training data into a number of clusters. The centers of these clusters are further processed using an optimal fuzzy clustering technique, which is based on the weighted fuzzy c-means algorithm. The resulted optimal fuzzy partition defines the number of fuzzy rules and provides an initial estimation for the system parameters, which in a next step are fine tuned using the well-known gradient-descend algorithm. The proposed method is successfully applied to three test examples, where the produced fuzzy models prove to be very accurate, as well as compact in size.
机译:本文介绍了一种基于分层模糊聚类方案的模糊建模新方法。该方法包括旨在开发具有最佳结构的Takagi-Sugeno(TS)模糊模型的一系列步骤,其中前提部分中的模糊集为高斯类型。从输入空间的初始普通模糊分区开始,该算法执行最近邻搜索,并将原始输入训练数据分组为多个聚类。使用基于加权模糊c均值算法的最佳模糊聚类技术进一步处理这些聚类的中心。生成的最佳模糊分区定义了模糊规则的数量,并提供了系统参数的初始估计,在下一步中,可以使用众所周知的梯度下降算法对它们进行微调。所提出的方法已成功地应用于三个测试示例,其中所产生的模糊模型被证明是非常准确的,并且尺寸紧凑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号