首页> 外文期刊>Fuzzy sets and systems >States on semi-divisible generalized residuated lattices reduce to states on MV-algebras
【24h】

States on semi-divisible generalized residuated lattices reduce to states on MV-algebras

机译:半可分广义剩余格上的状态归约为MV-代数上的状态

获取原文
获取原文并翻译 | 示例

摘要

A semi-divisible residuated lattice is a residuated lattice L satisfying an additional condition weaker than that of divisibility. Such structures are related to mathematical fuzzy logic as well as to extended probability theory by the fact that the subset of complemented elements induces an MV-algebra. We define generalized residuated lattices by omitting commutativity of the corresponding monoidal operation and study semi-divisibility in such structures. We show that, given a good generalized residuated lattice L, the set of complemented elements of L, denoted by M V(L), forms a pseudo-MV-algebra if and only if L is semi-divisible. Maximal filters on a semi-divisible generalized residuated lattice L are in one-to-one correspondence with maximal filters on MV(L). We study states on semi-divisible generalized residuated lattices. Riecan states on a semi-divisible generalized residuated lattice L are determined by Riecan states on MV(L). The same holds true for Bosbach states whenever L is a good divisible generalized residuated lattice. Extremal Riecan states on a semi-divisible generalized residuated lattice L are in one-to-one correspondence with maximal and semi-normal filters on L.
机译:半可分割剩余格是满足比可分割性弱的附加条件的剩余格L。这样的结构与数学模糊逻辑以及扩展概率理论有关,因为互补元素的子集会诱发MV代数。我们通过省略相应的半分式运算的可交换性来定义广义剩余格,并研究这种结构的半可分性。我们证明,给定一个良好的广义剩余格L,当且仅当L是半可分的时,由M V(L)表示的L的互补元素集形成伪MV代数。半可分广义残差格L上的最大滤波器与MV(L)上的最大滤波器一一对应。我们研究半可分广义残差格上的状态。半分割的广义剩余格L上的Riecan状态由MV(L)上的Riecan状态确定。只要L是一个很好的可除的广义剩余格,对于Bosbach状态,情况也是如此。半可分广义剩余格L上的极值Riecan态与L上的极大和半正规滤波器一一对应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号