首页> 外文期刊>Fuzzy sets and systems >Zero-order Tsk-type Fuzzy System Learning Using A Two-phaseswarm Intelligence Algorithm
【24h】

Zero-order Tsk-type Fuzzy System Learning Using A Two-phaseswarm Intelligence Algorithm

机译:两相温智能算法的零阶Tsk型模糊系统学习

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes zero-order Takagi-Sugeno-Kang (TSK)-type fuzzy system learning using a two-phase swarm intelligence algorithm (TPSIA). The first phase of TPSIA learns fuzzy system structure and parameters by on-line clustering-aided ant colony optimization (ACO). Phase two aims to further optimize all of the free parameters in the fuzzy system using particle swarm optimization (PSO). In clustering-aided ACO (CACO), fuzzy system structure is learned through on-line clustering. Once a new rule is generated by clustering, the consequent is selected from a discrete set of candidate values by ACO. In ACO, the path of an ant is regarded as a combination of consequent values selected from every rule. CACO helps to locate good initial fuzzy systems for subsequent phase learning. In Phase two, initial particles in PSO are randomly generated according to the best solution found by CACO. All free parameters in the designed fuzzy system are optimally tuned by PSO. Simulations on fuzzy control of three nonlinear plants are conducted to verify TPS1A performance. Comparisons with other learning algorithms demonstrate TPSIA performance.
机译:提出了一种利用两阶段群体智能算法(TPSIA)的零阶高木素人康(TSK)型模糊系统学习方法。 TPSIA的第一阶段通过在线聚类辅助蚁群优化(ACO)学习模糊系统的结构和参数。第二阶段旨在使用粒子群优化(PSO)进一步优化模糊系统中的所有自由参数。在聚类辅助ACO(CACO)中,通过在线聚类学习模糊系统的结构。通过聚类生成新规则后,ACO将从离散的一组候选值中选择结果。在ACO中,蚂蚁的路径被视为从每个规则中选择的结果值的组合。 CACO帮助找到良好的初始模糊系统,以用于后续阶段学习。在第二阶段,PSO中的初始粒子是根据CACO找到的最佳解决方案随机生成的。通过PSO可以优化设计的模糊系统中的所有自由参数。进行了三个非线性工厂的模糊控制仿真,以验证TPS1A的性能。与其他学习算法的比较证明了TPSIA的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号