首页> 外文期刊>Fuzzy sets and systems >A method for training finite mixture models under a fuzzy clustering principle
【24h】

A method for training finite mixture models under a fuzzy clustering principle

机译:一种基于模糊聚类原理的有限混合模型训练方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we establish a novel regard towards fuzzy clustering, showing it provides a sound framework for fitting finite mixture models. We propose a novel fuzzy clustering-type methodology for finite mixture model fitting, effected by utilizing a regularized form of the fuzzy c-means (FCM) algorithm, and introducing a proper dissimilarity functional for the algorithm with respect to the probabilistic properties of the model being treated. We apply the proposed methodology in a number of popular finite mixture models, and the corresponding expressions of the fuzzy model fitting algorithm are derived. We examine the efficacy of our novel approach in both clustering and classification applications of benchmark data sets, and we demonstrate the advantages of the proposed approach over maximum-likelihood.
机译:在本文中,我们建立了一种对模糊聚类的新思路,表明它为拟合有限混合模型提供了一个良好的框架。我们提出了一种新的模糊聚类类型的有限混合模型拟合方法,该方法通过利用模糊c均值(FCM)算法的正则形式来实现,并针对该模型的概率性质针对该算法引入了适当的相异函数正在接受治疗。我们将所提出的方法应用到许多流行的有限混合模型中,并推导了模糊模型拟合算法的相应表达式。我们在基准数据集的聚类和分类应用程序中检查了我们的新方法的有效性,并且我们证明了该方法在最大似然上的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号