首页> 外文期刊>Fuzzy sets and systems >Approximation of fuzzy functions by regular fuzzy neural networks
【24h】

Approximation of fuzzy functions by regular fuzzy neural networks

机译:常规模糊神经网络对模糊函数的逼近

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the ability of regular fuzzy neural networks to provide approximations to fuzzy functions. Since the operation of regular fuzzy neural networks is based on Zadeh's extension principle, we first present a level characterization of the Zadeh's extensions of level-continuous fuzzy-valued functions and consider the continuity of these extensions. On the basis of this, we give characterizations of fuzzy functions which can be approximated by a class of four-layer regular fuzzy neural networks according to supremum-metric and level convergence.
机译:在本文中,我们研究了常规模糊神经网络为模糊函数提供近似值的能力。由于规则模糊神经网络的操作基于Zadeh的扩展原理,因此我们首先对水平连续模糊值函数的Zadeh扩展进行层次描述,并考虑这些扩展的连续性。在此基础上,我们给出了模糊函数的刻画,可以根据一类四层常规模糊神经网络根据极值度量和水平收敛来近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号