首页> 外文期刊>Fuzzy sets and systems >Automated theorem provers for multiple-valued logics with satisfiability modulo theory solvers
【24h】

Automated theorem provers for multiple-valued logics with satisfiability modulo theory solvers

机译:带有可满足模理论求解器的多值逻辑的自动定理证明

获取原文
获取原文并翻译 | 示例

摘要

There is a relatively large number of papers dealing with complexity and proof theory issues of multiple-valued logics. Nevertheless, little attention has been paid so far to the development of efficient and robust solvers for such logics. In this paper we investigate how the technology of Satisfiability Modulo Theories (SMT) can be effectively used to build efficient automated theorem provers for relevant finitely-valued and infinitely-valued logics, taking the logics of Lukasiewicz, Godel and Product as case studies. Besides, we report on an experimental investigation that evaluates the performance of SMT technology when solving multiple-valued logic problems, and compares the finitely-valued solvers for Lukasiewicz and Godel logics with their infinitely-valued solvers from a computational point of view. We also compare the performance of SMT technology and MIP technology when testing the satisfiability on a genuine family of multiple-valued clausal forms. (C) 2015 Elsevier B.V. All rights reserved.
机译:有大量涉及多值逻辑的复杂性和证明理论问题的论文。然而,到目前为止,对于这种逻辑的有效且鲁棒的求解器的开发一直很少关注。在本文中,我们将以Lukasiewicz,Godel和Product的逻辑为例,研究可满足性模理论(SMT)技术如何有效地为相关的有限值和无限值逻辑构建高效的自动定理证明。此外,我们报告了一项实验调查,该实验评估了SMT技术在解决多值逻辑问题时的性能,并从计算的角度比较了Lukasiewicz和Godel逻辑的有限值求解器及其无限值求解器。在测试真正的多值子句形式系列的可满足性时,我们还比较了SMT技术和MIP技术的性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号