首页> 外文OA文献 >Automated theorem provers for multiple-valued logics with satisfiability modulo theory solvers
【2h】

Automated theorem provers for multiple-valued logics with satisfiability modulo theory solvers

机译:带有可满足模理论求解器的多值逻辑的自动定理证明

摘要

There is a relatively large number of papers dealing with complexity and proof theory issues of multiple-valued logics. Nevertheless, little attention has been paid so far to the development of efficient and robust solvers for such logics. In this paper we investigate how the technology of Satisfiability Modulo Theories (SMT) can be effectively used to build efficient automated theorem provers for relevant finitely-valued and infinitely-valued logics, taking the logics of Łukasiewicz, Gödel and Product as case studies. Besides, we report on an experimental investigation that evaluates the performance of SMT technology when solving multiple-valued logic problems, and compares the finitely-valued solvers for Łukasiewicz and Gödel logics with their infinitely-valued solvers from a computational point of view. We also compare the performance of SMT technology and MIP technology when testing the satisfiability on a genuine family of multiple-valued clausal forms
机译:有大量涉及多值逻辑的复杂性和证明理论问题的论文。然而,到目前为止,对于这种逻辑的有效且鲁棒的求解器的开发一直很少关注。在本文中,我们以Łukasiewicz,Gödel和Product的逻辑为案例研究,研究如何有效地使用可满足性模理论(SMT)的技术为相关的有限值和无限值逻辑构建高效的自动定理证明。此外,我们报告了一项实验研究,该研究评估了SMT技术在解决多值逻辑问题时的性能,并从计算的角度将Łukasiewicz和Gödel逻辑的有限值求解器与其无限值求解器进行了比较。在测试真正的多值子句形式系列的可满足性时,我们还比较了SMT技术和MIP技术的性能

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号