首页> 外文期刊>Fuzzy sets and systems >Geodesic distance based fuzzy c-medoid clustering - searching forcentral points in graphs and high dimensional data
【24h】

Geodesic distance based fuzzy c-medoid clustering - searching forcentral points in graphs and high dimensional data

机译:基于测地距离的模糊c-medoid聚类-在图形和高维数据中搜索中心点

获取原文
获取原文并翻译 | 示例

摘要

Clustering high dimensional data and identifying central nodes in a graph are complex and computationally expensive tasks. We utilize k-nn graph of high dimensional data as efficient representation of the hidden structure of the clustering problem. Initial cluster centers are determined by graph centrality measures. Cluster centers are fine-tuned by minimizing fuzzy-weighted geodesic distances. The shortest-path based representation is parallel to the concept of transitive closure. Therefore, our algorithm is capable to cluster networks or even more complex and abstract objects based on their partially known pairwise similarities. The algorithm is proven to be effective to identify senior researchers in a co-author network, central cities in topographical data, and clusters of documents represented by high dimensional feature vectors. (C) 2015 Elsevier B.V. All rights reserved.
机译:对高维数据进行聚类并在图形中标识中心节点是复杂且计算量大的任务。我们利用高维数据的k-nn图作为聚类问题隐藏结构的有效表示。初始聚类中心由图形集中度度量确定。通过最小化模糊加权测地距离来微调聚类中心。基于最短路径的表示与传递闭包的概念相似。因此,我们的算法能够根据部分已知的成对相似性对网络或更复杂的抽象对象进行聚类。事实证明,该算法可有效识别合作者网络中的高级研究人员,地形数据中的中心城市以及由高维特征向量表示的文档簇。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号