首页> 外文期刊>Fuzzy sets and systems >A novel density-based fuzzy clustering algorithm for low dimensional feature space
【24h】

A novel density-based fuzzy clustering algorithm for low dimensional feature space

机译:一种基于密度的低维特征空间模糊聚类算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel density-based fuzzy clustering algorithm based on Active Learning Method (ALM), which is a methodology of soft computing inspired by some hypotheses claiming that human brain interprets information in pattern like images rather than numerical quantities. The proposed clustering algorithm, Fuzzy Unsupervised Active Learning Method (FUALM), is performed in two main phases. First, each data point spreads in the feature space just like an ink drop that spreads on a sheet of paper. As a result of this process, densely connected ink patterns are formed that represent clusters. In the second phase, a fuzzifying process is applied in order to summarize the effects of all members of each cluster. Finding arbitrary shaped clusters, noise robustness and proposing fuzzy clusters are some of the advantages of our proposed clustering algorithm. The algorithm is described in full details and its performance is evaluated and compared with well-known clustering algorithms on synthetic and real-world datasets. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种基于主动学习方法(ALM)的新颖的基于密度的模糊聚类算法,该算法是一种受到一些假设启发的软计算方法,这些假设声称人脑以图像而不是数值形式来解释信息。提出的聚类算法,模糊无监督主动学习方法(FUALM),在两个主要阶段执行。首先,每个数据点都在特征空间中扩散,就像在纸上扩散的墨滴一样。作为该过程的结果,形成了代表簇的密集连接的墨水图案。在第二阶段,应用模糊化过程以总结每个群集的所有成员的影响。查找任意形状的聚类,噪声鲁棒性和提出模糊聚类是我们提出的聚类算法的优点。详细描述了该算法,并对其性能进行了评估,并与合成和真实数据集上的众所周知的聚类算法进行了比较。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号