首页> 外文期刊>Fuzzy Optimization and Decision Making >The bi-objective fuzzy c-means cluster analysis for TSK fuzzy system identification
【24h】

The bi-objective fuzzy c-means cluster analysis for TSK fuzzy system identification

机译:TSK模糊系统辨识的双目标模糊c均值聚类分析

获取原文
获取原文并翻译 | 示例

摘要

For conventional fuzzy clustering-based approaches to fuzzy system identification, a fuzzy function is used for cluster formation and another fuzzy function is used for cluster validation to determine the number and location of the clusters which define IF parts of the rule base. However, the different fuzzy functions used for cluster formation and validation may not indicate the same best number and location of the clusters. This potential disparity motivates us to propose a new fuzzy clustering-based approach to fuzzy system identification based on the bi-objective fuzzy c-means (BOFCM) cluster analysis. In this approach, we use the BOFCM function for both cluster formation and validation to simultaneously determine the number and location of the clusters which we hope can efficiently and effectively define IF parts of the rule base. The proposed approach is validated by applying it to the truck backer-upper problem with an obstacle in the center of the field.
机译:对于常规的基于模糊聚类的模糊系统识别方法,使用模糊函数进行聚类形成,使用另一个模糊函数进行聚类验证,以确定定义规则库中频部分的聚类的数量和位置。但是,用于聚类形成和验证的不同模糊函数可能无法指示聚类的最佳数量和位置。这种潜在的差异促使我们提出一种基于双目标模糊c均值(BOFCM)聚类分析的基于模糊聚类的模糊系统识别方法。在这种方法中,我们使用BOFCM函数进行聚类形成和验证,以同时确定聚类的数量和位置,我们希望它们可以有效地定义规则库的IF部分。通过将其应用于在卡车中后方存在障碍物的卡车区域,该方法得到了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号