首页> 外文期刊>Future generation computer systems >Deeply-learned and spatial-temporal feature engineering for human action understanding
【24h】

Deeply-learned and spatial-temporal feature engineering for human action understanding

机译:对人类行动理解的深受学习和空间颞态特征工程

获取原文
获取原文并翻译 | 示例

摘要

Accurately recognizing various human actions is a key technique in many AI applications, such as visual tracking and human-computer interaction. Aiming at solving the difficulty that the local spatial-temporal features at low-layer is limited and the descriptiveness of middle-level features is weak, we propose a novel human action understanding framework by leveraging the spatial-temporal depth features. More specifically, based on the fact that violent action regions encode highly discriminative information during human action recognition, we employ human depth clue of video images to identify the salient regions for each human. The optical flow characteristics in the regions are utilized as the energy function to measure the regional representativeness. The deep learning architecture is proposed to identify the regions of motions by the energy function. In this way, the sample points are distributed in the areas with intense movements. The collected sample points are utilized as the learned features to capture human action. Based on the learned deep feature, an SVM classifier is used to identify different human action. Comprehensive experimental results have shown that the average recognition accuracy of our human action recognition algorithm reaches 92%, and also exhibits a high robustness to complicated backgrounds.
机译:准确地识别各种人类动作是许多AI应用中的关键技术,例如视觉跟踪和人机交互。旨在解决低层的局部空间特征有限的困难,中层特征的描述较弱,我们通过利用空间时间深度特征来提出一种新颖的人类行动理解框架。更具体地,基于暴力动作区域在人类行动识别期间编码高度辨别信息的事实,我们采用人类的视频图像的深度线索来识别每个人的突出区域。区域中的光学流动特性用作测量区域代表性的能量函数。建议深入学习架构来识别能量函数的运动区域。以这种方式,采样点分布在具有强烈运动的区域中。收集的采样点用作捕获人类行动的学习功能。基于学习的深度特征,SVM分类器用于识别不同的人类行动。综合实验结果表明,我们人类行动识别算法的平均识别准确性达到92%,并且对复杂的背景也表现出高稳健性。

著录项

  • 来源
    《Future generation computer systems》 |2021年第10期|257-262|共6页
  • 作者

    Hechuang Wang;

  • 作者单位

    School of Information Engineering North China University of Water Resources and Electric Power Zhengzhou Henan 450045 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号