首页> 外文期刊>Future generation computer systems >An AI-enabled lightweight data fusion and load optimization approach for Internet of Things
【24h】

An AI-enabled lightweight data fusion and load optimization approach for Internet of Things

机译:一种支持AI的轻量级数据融合和装载优化方法

获取原文
获取原文并翻译 | 示例

摘要

In the densely populated Internet of Things (IoT) applications, sensing range of the nodes might overlap frequently. In these applications, the nodes gather highly correlated and redundant data in their vicinity. Processing these data depletes the energy of nodes and their upstream transmission towards remote datacentres, in the fog infrastructure, may result in an unbalanced load at the network gateways and edge servers. Due to heterogeneity of edge servers, few of them might be overwhelmed while others may remain less-utilized. As a result, time-critical and delay-sensitive applications may experience excessive delays, packet loss, and degradation in their Quality of Service (QoS). To ensure QoS of IoT applications, in this paper, we eliminate correlation in the gathered data via a lightweight data fusion approach. The buffer of each node is partitioned into strata that broadcast only non-correlated data to edge servers via the network gateways. Furthermore, we propose a dynamic service migration technique to reconfigure the load across various edge servers. We assume this as an optimization problem and use two meta-heuristic algorithms, along with a migration approach, to maintain an optimal Gateway-Edge configuration in the network. These algorithms monitor the load at each server, and once it surpasses a threshold value (which is dynamically computed with a simple machine learning method), an exhaustive search is performed for an optimal and balanced periodic reconfiguration. The experimental results of our approach justify its efficiency for large-scale and densely populated IoT applications.
机译:在密集地填充的物联网(IOT)应用中,节点的感测范围可能经常重叠。在这些应用中,节点在其附近收集高度相关和冗余数据。处理这些数据耗尽节点的能量以及他们对远程数据中心上行传输,在雾中的基础设施,可能会导致不平衡负载在网络网关和边缘服务器。由于边缘服务器的异质性,其中很少有人可能不堪重负,而其他人可能会仍然较少使用。因此,时间关键和延迟敏感的应用可能会在其服务质量(QoS)中经历过度延迟,丢包和劣化。为了确保IOT应用程序的QoS,在本文中,我们通过轻量级数据融合方法消除了收集数据中的相关性。每个节点的缓冲区被划分为通过网络网关仅广播非相关数据到边缘服务器的地层。此外,我们提出了一种动态的服务迁移技术来重新配置各种边缘服务器的负载。我们认为这是优化问题,并使用两个元启发式算法以及迁移方法,以在网络中维护最佳网关边缘配置。这些算法监视每个服务器处的负载,并且一旦超过阈值(用简单的机器学习方法动态计算),就可以为最佳和平衡的周期性重新配置执行详尽的搜索。我们的方法实验结果为大规模和密集的物联网应用提供了效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号