首页> 外文期刊>Future generation computer systems >An affective learning-based system for diagnosis and personalized management of diabetes mellitus
【24h】

An affective learning-based system for diagnosis and personalized management of diabetes mellitus

机译:基于情感学习的糖尿病诊断和个性化管理系统

获取原文
获取原文并翻译 | 示例

摘要

Diabetes Mellitus is a major health problem with high global morbidity and mortality rates. While, conventional diagnosis methods are based on monitoring blood glucose levels, variables such as body mass index and diastolic blood pressure have been reported as having stable correlations with the incidence and prevalence of diabetes. Recently, machine learning approaches are developed for diagnosis of diabetes, but the existing models are mostly trained and validated on single dataset while the apt strategies needed for proper management of diabetes mellitus are omitted. In this study, we develop an affective learning-based system for diagnosis and therapy of diabetes mellitus. The integrated system consists of a multimodal adaptive neuro-fuzzy inference model designed for diagnosis of diabetes, and a knowledge-based diets recommender model designed for personalized management of diabetes. The diagnosis model was trained and validated with 87.5% and 13.5% of Pima Indians diabetes dataset, respectively; and re-validated with Schorling diabetes dataset; both of which are publicly available. Then, the model was applied retrospectively on a private dataset consisting of 14 female patients' records obtained at Obafemi Awolowo University Teaching Hospital Complex, Ile-lfe, Nigeria. Also, the recommender model combines users' diagnoses results with their eating formulae to determine users' food-per-day consumption and generate weekly personalized food-plan from an expert-designed template. Evaluation results from the studies show that both models performed well. Specifically, the multimodal model attained training and validation accuracies of 83.8% and 79.2%, respectively for Pima dataset, and prediction accuracies of 72.9% and 94.3% for the Schorling and private dataset cases, respectively. In addition, the model shows the best performance when compared with individual baseline models, and ten existing machine learning methods used in related studies. Similarly, the proposed recommender model received the highest average score when compared with several existing diet recommender systems used for chronic diseases therapy. With these promising features, the proposed affective learning-based system could effectively reduce the morbidity and mortality rates of diabetes mellitus in the world.
机译:糖尿病是全球性发病率高的主要健康问题。虽然,常规诊断方法基于监测血糖水平,但据报道,体重指数和舒张压等变量与糖尿病的发生率和患病率稳定相关。最近,制定了机器学习方法以诊断糖尿病,但现有的模型主要培训并在单个数据集上验证,而省略了适当管理糖尿病所需的APT策略。在这项研究中,我们开发了一种基于情感的学习系统,用于诊断和治疗糖尿病。集成系统包括用于诊断糖尿病的多模式自适应神经模糊推理模型,以及专为糖尿病个性化管理设计的知识饮食推荐模型。诊断模型分别培训并验证了87.5%和13.5%的PIMA印第安人糖尿病数据集;并重新验证Schorling糖尿病数据集;两者都公开可用。然后,追溯应用该模型在尼日利亚奥西·威尼斯伊河 - 尼日利亚奥莱·威尔省的14名女性患者记录组成的私人数据集。此外,推荐模型将用户的诊断结果与他们的饮食公式结合起来,以确定用户的每日食物消费,并从专家设计的模板生成每周个性化的食品计划。研究结果表明,两款模型表现良好。具体而言,多峰模型分别实现了83.8%和79.2%的培训和验证精度,分别为PIMA数据集,分别为肖尔林和私人数据集案件的72.9%和94.3%的预测精度。此外,该模型显示与个体基线模型相比的最佳性能,以及相关研究中使用的十种现有机器学习方法。同样,与用于慢性疾病治疗的几个现有的饮食推荐系统相比,所提出的推荐模型得到了最高的平均分数。通过这些有希望的功能,拟议的情感学习系统可以有效地降低了世界上糖尿病的发病率和死亡率。

著录项

  • 来源
    《Future generation computer systems》 |2021年第4期|273-290|共18页
  • 作者单位

    CAS Key laboratory for Health Informatics Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China Centre for Medical Robotics and MIS Devices Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China;

    Department of Information Systems Federal University of Technology Akure Nigeria;

    Department of Information Systems Federal University of Technology Akure Nigeria;

    Centre for Medical Robotics and MIS Devices Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China;

    Department of Computer Science Networking Wentworth Institute of Technology Boston MA USA;

    Centre for Medical Robotics and MIS Devices Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China;

    CAS Key laboratory for Health Informatics Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China Centre for Medical Robotics and MIS Devices Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Diabetes mellitus; MANFIS; Medical diagnosis; Recommender system; Diet personalization; Affective systems;

    机译:糖尿病;曼菲斯;医学诊断;推荐系统;饮食个性化;情感系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号