首页> 外文期刊>Future generation computer systems >Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs
【24h】

Towards automated feature engineering for credit card fraud detection using multi-perspective HMMs

机译:迈向使用多角度HMM进行信用卡欺诈检测的自动化功能工程

获取原文
获取原文并翻译 | 示例

摘要

Machine learning and data mining techniques have been used extensively in order to detect credit card frauds. However, most studies consider credit card transactions as isolated events and not as a sequence of transactions.In this framework, we model a sequence of credit card transactions from three different perspectives, namely (i) The sequence contains or doesn't contain a fraud (ii) The sequence is obtained by fixing the card-holder or the payment terminal (iii) It is a sequence of spent amount or of elapsed time between the current and previous transactions. Combinations of the three binary perspectives give eight sets of sequences from the (training) set of transactions. Each one of these sequences is modelled with a Hidden Markov Model (HMM). Each HMM associates a likelihood to a transaction given its sequence of previous transactions. These likelihoods are used as additional features in a Random Forest classifier for fraud detection.Our multiple perspectives HMM-based approach offers automated feature engineering to model temporal correlations so as to improve the effectiveness of the classification task and allows for an increase in the detection of fraudulent transactions when combined with the state of the art expert based feature engineering strategy for credit card fraud detection.In extension to previous works, we show that this approach goes beyond ecommerce transactions and provides a robust feature engineering over different datasets, hyperparameters and classifiers. Moreover, we compare strategies to deal with structural missing values. (C) 2019 Elsevier B.V. All rights reserved.
机译:机器学习和数据挖掘技术已被广泛使用,以检测信用卡欺诈。但是,大多数研究将信用卡交易视为孤立事件而不是交易序列。在此框架中,我们从三个不同的角度对信用卡交易序列进行建模,即(i)该序列包含或不包含欺诈行为(ii)通过固定持卡人或付款终端来获得顺序。(iii)这是当前交易和先前交易之间的花费金额或经过时间的顺序。三种二元视角的组合从(训练)交易集中给出了八组序列。这些序列中的每个序列都用隐马尔可夫模型(HMM)建模。给定其先前交易的顺序,每个HMM将可能性与交易相关联。这些可能性在随机森林分类器中用作欺诈检测的附加功能。基于多角度HMM的方法提供了自动特征工程来对时间相关性进行建模,从而提高了分类任务的有效性,并增加了检测的可能性。欺诈交易与最先进的基于专家的特征工程策略结合使用以进行信用卡欺诈检测。在先前工作的扩展中,我们证明了这种方法超越了电子商务交易,并且针对不同的数据集,超参数和分类器提供了强大的特征工程。此外,我们比较了处理结构性缺失值的策略。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号