首页> 外文期刊>Expert Systems with Application >Feature engineering strategies for credit card fraud detection
【24h】

Feature engineering strategies for credit card fraud detection

机译:信用卡欺诈检测的功能工程策略

获取原文
获取原文并翻译 | 示例

摘要

Every year billions of Euros are lost worldwide due to credit card fraud. Thus, forcing financial institutions to continuously improve their fraud detection systems. In recent years, several studies have proposed the use of machine learning and data mining techniques to address this problem. However, most studies used some sort of misclassification measure to evaluate the different solutions, and do not take into account the actual financial costs associated with the fraud detection process. Moreover, when constructing a credit card fraud detection model, it is very important how to extract the right features from the transactional data. This is usually done by aggregating the transactions in order to observe the spending behavioral patterns of the customers. In this paper we expand the transaction aggregation strategy, and propose to create a new set of features based on analyzing the periodic behavior of the time of a transaction using the von Mises distribution. Then, using a real credit card fraud dataset provided by a large European card processing company, we compare state-of-the-art credit card fraud detection models, and evaluate how the different sets of features have an impact on the results. By including the proposed periodic features into the methods, the results show an average increase in savings of 13%. (C) 2016 Elsevier Ltd. All rights reserved.
机译:全世界每年由于信用卡欺诈而损失数十亿欧元。因此,迫使金融机构不断改进其欺诈检测系统。近年来,一些研究提出了使用机器学习和数据挖掘技术来解决这个问题。但是,大多数研究使用某种分类错误的评估方法来评估不同的解决方案,并且没有考虑与欺诈检测过程相关的实际财务成本。此外,在构建信用卡欺诈检测模型时,如何从交易数据中提取正确的特征非常重要。通常通过汇总交易以观察客户的消费行为模式来完成此操作。在本文中,我们扩展了交易聚合策略,并建议在使用von Mises分布分析交易时间的周期性行为的基础上,创建一组新功能。然后,使用大型欧洲卡处理公司提供的真实信用卡欺诈数据集,我们比较了最先进的信用卡欺诈检测模型,并评估了不同的功能集如何对结果产生影响。通过将建议的周期性特征包括到方法中,结果显示平均节省了13%。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号