首页> 外文期刊>Future generation computer systems >A machine learning-based FinTech cyber threat attribution framework using high-level indicators of compromise
【24h】

A machine learning-based FinTech cyber threat attribution framework using high-level indicators of compromise

机译:基于机器学习的FinTech网络威胁归因框架,使用了高级危害指标

获取原文
获取原文并翻译 | 示例

摘要

Cyber threat attribution identifies the source of a malicious cyber activity, which in turn informs cyber security mitigation responses and strategies. Such responses and strategies are crucial for deterring future attacks, particularly in the financial and critical infrastructure sectors. However, existing approaches generally rely on manual analysis of attack indicators obtained through approaches such as trace-back, firewalls, intrusion detection and honeypot deployments. These attack indicators, also known as low-level Indicators of Compromise (IOCs), are rarely re-used and can be easily modified and disguised resulting in a deceptive and biased cyber threat attribution. Cyber attackers, particularly financially-motivated actors, can use common high-level attack patterns that evolve less frequently as compared to the low-level IOCs. To attribute cyber threats effectively, it is necessary to identify them based on the high-level adversary's attack patterns (e.g. tactics, techniques and procedures - TTPs, software tools and malware) employed in different phases of the cyber kill chain. Identification of high-level attack patterns is time-consuming, requiring forensic investigation of the victim network(s) and other resources. In the rare case that attack patterns are reported in cyber threat intelligence (CTI) reports, the format is textual and unstructured typically taking the form of lengthy incident reports prepared for human consumption (e.g. prepared for C-level and senior management executives), which cannot be directly interpreted by machines. Thus, in this paper we propose a framework to automate cyber threat attribution. Specifically, we profile cyber threat actors (CTAs) based on their attack patterns extracted from CTI reports, using the distributional semantics technique of Natural Language Processing. Using these profiles, we train and test five machine learning classifiers on 327 CTI reports collected from publicly available incident reports that cover events from May 2012 to February 2018. It is observed that the CTA profiles obtained attribute cyber threats with a high precision (i.e. 83% as compared to other publicly available CTA profiles, where the precision is 33%). The Deep Learning Neural Network (DLNN) based classifier also attributes cyber threats with a higher accuracy (i.e. 94% as compared to other classifiers). (C) 2019 Elsevier B.V. All rights reserved.
机译:网络威胁归因可识别恶意网络活动的来源,进而通知网络安全缓解措施和策略。此类响应和策略对于阻止未来的攻击至关重要,特别是在金融和关键基础设施领域。但是,现有方法通常依赖于对通过跟踪,防火墙,入侵检测和蜜罐部署等方法获得的攻击指标的手动分析。这些攻击指标(也称为低级威胁指标(IOC))很少重复使用,并且易于修改和伪装,从而导致欺骗性和偏颇的网络威胁归因。网络攻击者,尤其是出于经济动机的参与者,可以使用常见的高级攻击模式,与低级别的IOC相比,这种攻击模式的发展频率较低。为了有效地归因于网络威胁,有必要根据在网络杀伤链不同阶段采用的高级攻击者的攻击模式(例如战术,技术和程序-TTP,软件工具和恶意软件)进行识别。识别高级攻击模式非常耗时,需要对受害者网络和其他资源进行法医调查。在网络威胁情报(CTI)报告中报告了攻击模式的极少数情况下,该格式为文本格式且没有结构,通常采用冗长的事件报告形式供人类食用(例如,为C级和高级管理人员准备),无法由机器直接解释。因此,在本文中,我们提出了一个自动化网络威胁归因的框架。具体来说,我们使用自然语言处理的分布式语义技术,根据从CTI报告中提取的攻击模式来分析网络威胁行为者(CTA)。使用这些配置文件,我们在327个CTI报告中训练和测试了五个机器学习分类器,这些报告从可公开获取的事件报告中收集,这些报告涵盖了2012年5月至2018年2月的事件。据观察,CTA配置文件获得了高精度的网络威胁属性(即83 %与其他公开CTA配置文件相比,该精度为33%)。基于深度学习神经网络(DLNN)的分类器还可以更准确地归因于网络威胁(即与其他分类器相比为94%)。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号