首页> 中文期刊> 《计算技术与自动化》 >基于网络行为自学习的高级持续性威胁检测技术研究

基于网络行为自学习的高级持续性威胁检测技术研究

     

摘要

高级持续威胁(APT)对网络安全构成严重威胁,其独特的高度不可预测性、深度隐蔽性和严重危害性使得传统网络监控技术在大规模复杂网络流量背景下面临前所未有的挑战.针对APT检测的迫切需求,依托大数据分析和云计算技术的快速发展,基于机器学习理论,对网络应用语义丰富的行为特征模式进行描述,通过网络协议反向分析和数据流处理技术的有机结合,建立了一套支持建立入侵容忍网络生态环境的新的APT自学习检测框架.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号