首页> 外文期刊>Future generation computer systems >Knowledge-aware Proactive Nodes Selection approach for energy management in Internet of Things
【24h】

Knowledge-aware Proactive Nodes Selection approach for energy management in Internet of Things

机译:知识感知的物联网能源管理中的主动节点选择方法

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things will serve communities across the different domains of life. Tracking mobile targets is one important system engineering application in IOT, and the resource of embedded devices and objects working under IoT implementation are constrained. Thus, building a scheme to make full use of energy is key issue for mobile target tracking applications. To achieve both energy efficiency and high monitoring performance, an effective Knowledge-aware Proactive Nodes Selection (KPNS) system is proposed in this paper. The innovations of KPNS are as follows: 1) the number of proactive nodes are dynamically adjusted based on prediction accuracy of target trajectory. If the prediction accuracy is high, the number of proactive nodes in the non-main predicted area will be decreased. If prediction accuracy of moving trajectory is low, large number of proactive nodes will be selected to enhance monitoring quality. 2) KPNS takes full advantage of energy to further enhance target tracking performance by properly selecting more proactive nodes in the network. We evaluated the efficiency of KPNS with both theory analysis and simulation based experiments. The experimental results demonstrate that compared with Probability-based target Prediction and Sleep Scheduling strategy (PPSS), KPNS scheme improves the energy efficiency by 60%, and can reduce target missing rate and tracking delay to 66%, 75% respectively.
机译:物联网将为生活中不同领域的社区提供服务。跟踪移动目标是物联网中一项重要的系统工程应用,并且物联网实施下嵌入式设备和对象的资源受到限制。因此,对于移动目标跟踪应用而言,建立一个充分利用能量的方案是关键问题。为了实现能源效率和高监控性能,本文提出了一种有效的知识感知主动节点选择(KPNS)系统。 KPNS的创新如下:1)根据目标轨迹的预测精度动态调整主动节点的数量。如果预测精度高,则非主要预测区域中的主动节点数将减少。如果移动轨迹的预测精度较低,将选择大量的主动节点以提高监视质量。 2)KPNS充分利用能量,通过适当选择网络中的更多主动节点来进一步增强目标跟踪性能。我们通过理论分析和基于模拟的实验评估了KPNS的效率。实验结果表明,与基于概率的目标预测和睡眠调度策略(PPSS)相比,KPNS方案将能源效率提高了60%,并且可以将目标丢失率和跟踪延迟分别降低至66%和75%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号