首页> 外文期刊>Future generation computer systems >Multi-scale Dense Gate Recurrent Unit Networks for bearing remaining useful life prediction
【24h】

Multi-scale Dense Gate Recurrent Unit Networks for bearing remaining useful life prediction

机译:多尺度密集门循环单元网络,用于预测剩余使用寿命

获取原文
获取原文并翻译 | 示例

摘要

Internet of thing (IoT), with the rapid development, is the systematic combination of physical process, information and communication technologies. Industry internet of thing (IIoT), as the extension of IoT in industry, makes the industrial production more intelligent and efficient. Remaining useful life prediction (RUL), as an essential application area of IIoT, plays an increasingly crucial role. In traditional data-based methods, the feature extraction methods depend on the prior knowledge and are separated from the RUL models. Though ensemble learning can be applied to prevent overfitting, the methods about ensemble learning are still separated from the RUL model. To overcome these drawbacks, a novel deep learning network, namely Multi-scale Dense Gate Recurrent Unit Network (MDGRU) is proposed in this paper, which is composed of the feature layers initialized by pre-trained Restricted Boltzmann Machine (RBM) network, multi-scale layers, skip gate recurrent unit layers, dense layers. By adding multi-scale layers and dense layers, the network can capture the sequence features and ensemble different time-scale attention information. Meanwhile it is an end-to-end network combining the feature extraction methods and RUL models only by pre-training the RBM model so it is more convenient for application. Our experiments with real bearings datasets show that proposed MDGRU network is able to achieve higher accuracy compared to other data-driven methods. (C) 2018 Elsevier B.V. All rights reserved.
机译:随着快速发展,物联网是物理过程,信息和通信技术的系统组合。工业物联网(IIoT)作为物联网在工业中的扩展,使工业生产更加智能和高效。剩余使用寿命预测(RUL)作为IIoT的重要应用领域,发挥着越来越重要的作用。在传统的基于数据的方法中,特征提取方法取决于先验知识,并且与RUL模型分开。尽管可以应用集成学习来防止过度拟合,但是关于集成学习的方法仍与RUL模型分开。为了克服这些缺点,本文提出了一种新型的深度学习网络,即多尺度密集门递归单元网络(MDGRU),该网络由预先训练的受限玻尔兹曼机器(RBM)网络初始化的特征层组成。尺度层,跳过门循环单元层,密集层。通过添加多尺度层和密集层,网络可以捕获序列特征并集合不同的时尺度注意信息。同时,它是仅通过预先训练RBM模型而将特征提取方法和RUL模型相结合的端到端网络,因此更易于应用。我们使用真实轴承数据集进行的实验表明,与其他数据驱动方法相比,提出的MDGRU网络能够实现更高的精度。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Future generation computer systems》 |2019年第5期|601-609|共9页
  • 作者单位

    Beihang Univ, Sch Automat Sci & Elect Engn, Cloud Mfg Res Ctr, Beijing, Peoples R China|Minist Educ, Engn Res Ctr Complex Prod Adv Mfg Syst, Beijing, Peoples R China;

    Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China|Minist Educ, Engn Res Ctr Complex Prod Adv Mfg Syst, Beijing, Peoples R China;

    St Francis Xavier Univ, Dept Comp Sci, Antigonish, NS, Canada;

    Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China|Minist Educ, Engn Res Ctr Complex Prod Adv Mfg Syst, Beijing, Peoples R China;

    Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China|Minist Educ, Engn Res Ctr Complex Prod Adv Mfg Syst, Beijing, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Internet of things; Smart data; Remaining useful life prediction; Deep learning; Gated Recurrent Unit Network;

    机译:物联网;智能数据;剩余使用寿命预测;深度学习;门控循环单元网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号