首页> 外文期刊>Reliability Engineering & System Safety >Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process
【24h】

Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process

机译:基于门控递归单元的递归神经网络用于预测非线性劣化过程的剩余使用寿命

获取原文
获取原文并翻译 | 示例

摘要

Remaining useful life (RUL) prediction is a key process for prognostics and health management (PHM). However, conventional model-based methods and data-driven methods for RUL prediction are bad at a very complex system with multiple components, multiple states and therefore extremely large amount of parameters. In order to solve the problem, a general two-step solution is proposed in this paper. In the first step, kernel principle component analysis (KPCA) is applied for nonlinear feature extraction. Then, a novel recurrent neural network called gated recurrent unit (GRU) is presented as the second step to predict RUL. GRU network is capable of describing a very complex system because of its specially designed structure. The effectiveness of the proposed solution for RUL prediction of a nonlinear degradation process is proved by a case study of commercial modular aero-propulsion system simulation data (C-MAPSS-Data) from NASA. Results also show that the proposed method requires less training time and has better prediction accuracy than other data-driven methods.
机译:剩余使用寿命(RUL)预测是预测和健康管理(PHM)的关键过程。但是,常规的基于模型的方法和用于RUL预测的数据驱动方法在具有多个组件,多个状态并因此具有大量参数的非常复杂的系统中是不利的。为了解决该问题,本文提出了一种通用的两步法。第一步,将内核主成分分析(KPCA)应用于非线性特征提取。然后,提出了一种称为门控递归单元(GRU)的新颖递归神经网络,作为预测RUL的第二步。由于其特殊设计的结构,GRU网络能够描述一个非常复杂的系统。通过对美国国家航空航天局(NASA)提供的商用模块化航空推进系统仿真数据(C-MAPSS-Data)的案例研究,证明了所提出解决方案对非线性退化过程的RUL预测的有效性。结果还表明,与其他数据驱动方法相比,该方法所需的训练时间更少,预测精度更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号